unreal.GoogleARCoreFaceMeshComponent

class unreal.GoogleARCoreFaceMeshComponent(outer=None, name='None')

Bases: unreal.ProceduralMeshComponent

This component is updated by the ARSystem with face data on devices that have support for it. Note that this class is now deprecated, it’s replaced by ARFaceComponent which works on all the platforms support face tracking.

C++ Source:

  • Plugin: GoogleARCore

  • Module: GoogleARCoreBase

  • File: GoogleARCoreFaceMeshComponent.h

Editor Properties: (see get_editor_property/set_editor_property)

  • absolute_location (bool): [Read-Write] Absolute Location: If RelativeLocation should be considered relative to the world, rather than the parent

  • absolute_rotation (bool): [Read-Write] Absolute Rotation: If RelativeRotation should be considered relative to the world, rather than the parent

  • absolute_scale (bool): [Read-Write] Absolute Scale: If RelativeScale3D should be considered relative to the world, rather than the parent

  • affect_distance_field_lighting (bool): [Read-Write] Affect Distance Field Lighting: Controls whether the primitive should affect dynamic distance field lighting methods. This flag is only used if CastShadow is true. *

  • affect_dynamic_indirect_lighting (bool): [Read-Write] Affect Dynamic Indirect Lighting: Controls whether the primitive should inject light into the Light Propagation Volume. This flag is only used if CastShadow is true. *

  • allow_cull_distance_volume (bool): [Read-Write] Allow Cull Distance Volume: Whether to accept cull distance volumes to modify cached cull distance.

  • always_create_physics_state (bool): [Read-Write] Always Create Physics State: Indicates if we’d like to create physics state all the time (for collision and simulation). If you set this to false, it still will create physics state if collision or simulation activated. This can help performance if you’d like to avoid overhead of creating physics state when triggers

  • apply_impulse_on_damage (bool): [Read-Write] Apply Impulse on Damage: True for damage to this component to apply physics impulse, false to opt out of these impulses.

  • asset_user_data (Array(AssetUserData)): [Read-Write] Asset User Data: Array of user data stored with the component

  • auto_activate (bool): [Read-Write] Auto Activate: Whether the component is activated at creation or must be explicitly activated.

  • auto_bind_to_local_face_mesh (bool): [Read-Write] Auto Bind to Local Face Mesh: If true, the mesh data will come from the local ARKit face mesh data. The face mesh will update every tick and will handle loss of face tracking

  • body_instance (BodyInstance): [Read-Write] Body Instance: Physics scene information for this component, holds a single rigid body with multiple shapes.

  • bounds_scale (float): [Read-Write] Bounds Scale: Scales the bounds of the object. This is useful when using World Position Offset to animate the vertices of the object outside of its bounds. Warning: Increasing the bounds of an object will reduce performance and shadow quality! Currently only used by StaticMeshComponent and SkeletalMeshComponent.

  • cached_max_draw_distance (float): [Read-Only] Cached Max Draw Distance: The distance to cull this primitive at. A CachedMaxDrawDistance of 0 indicates that the primitive should not be culled by distance.

  • can_character_step_up_on (CanBeCharacterBase): [Read-Write] Can Character Step Up On: Determine whether a Character can step up onto this component. This controls whether they can try to step up on it when they bump in to it, not whether they can walk on it after landing on it. see: FWalkableSlopeOverride

  • can_ever_affect_navigation (bool): [Read-Write] Can Ever Affect Navigation: Whether this component can potentially influence navigation

  • cast_cinematic_shadow (bool): [Read-Write] Cast Cinematic Shadow: Whether this component should cast shadows from lights that have bCastShadowsFromCinematicObjectsOnly enabled. This is useful for characters in a cinematic with special cinematic lights, where the cost of shadowmap rendering of the environment is undesired.

  • cast_contact_shadow (bool): [Read-Write] Cast Contact Shadow: Whether the object should cast contact shadows. This flag is only used if CastShadow is true.

  • cast_dynamic_shadow (bool): [Read-Write] Cast Dynamic Shadow: Controls whether the primitive should cast shadows in the case of non precomputed shadowing. This flag is only used if CastShadow is true. *

  • cast_far_shadow (bool): [Read-Write] Cast Far Shadow: When enabled, the component will be rendering into the far shadow cascades (only for directional lights).

  • cast_hidden_shadow (bool): [Read-Write] Cast Hidden Shadow: If true, the primitive will cast shadows even if bHidden is true. Controls whether the primitive should cast shadows when hidden. This flag is only used if CastShadow is true.

  • cast_inset_shadow (bool): [Read-Write] Cast Inset Shadow: Whether this component should create a per-object shadow that gives higher effective shadow resolution. Useful for cinematic character shadowing. Assumed to be enabled if bSelfShadowOnly is enabled.

  • cast_shadow (bool): [Read-Write] Cast Shadow: Controls whether the primitive component should cast a shadow or not.

  • cast_shadow_as_two_sided (bool): [Read-Write] Cast Shadow as Two Sided: Whether this primitive should cast dynamic shadows as if it were a two sided material.

  • cast_static_shadow (bool): [Read-Write] Cast Static Shadow: Whether the object should cast a static shadow from shadow casting lights. This flag is only used if CastShadow is true.

  • cast_volumetric_translucent_shadow (bool): [Read-Write] Cast Volumetric Translucent Shadow: Whether the object should cast a volumetric translucent shadow. Volumetric translucent shadows are useful for primitives with smoothly changing opacity like particles representing a volume, But have artifacts when used on highly opaque surfaces.

  • component_tags (Array(Name)): [Read-Write] Component Tags: Array of tags that can be used for grouping and categorizing. Can also be accessed from scripting.

  • consider_for_actor_placement_when_hidden (bool): [Read-Write] Consider for Actor Placement when Hidden: If true, this component will be considered for placement when dragging and placing items in the editor even if it is not visible, such as in the case of hidden collision meshes

  • custom_depth_stencil_value (int32): [Read-Write] Custom Depth Stencil Value: Optionally write this 0-255 value to the stencil buffer in CustomDepth pass (Requires project setting or r.CustomDepth == 3)

  • custom_depth_stencil_write_mask (RendererStencilMask): [Read-Write] Custom Depth Stencil Write Mask: Mask used for stencil buffer writes.

  • custom_primitive_data (CustomPrimitiveData): [Read-Write] Custom Primitive Data: Optional user defined default values for the custom primitive data of this primitive

  • detail_mode (DetailMode): [Read-Write] Detail Mode: If detail mode is >= system detail mode, primitive won’t be rendered.

  • editable_when_inherited (bool): [Read-Write] Editable when Inherited: True if this component can be modified when it was inherited from a parent actor class

  • emissive_light_source (bool): [Read-Write] Emissive Light Source: Whether the primitive will be used as an emissive light source.

  • enable_auto_lod_generation (bool): [Read-Write] Enable Auto LODGeneration: Whether to include this component in HLODs or not.

  • enable_material_parameter_caching (bool): [Read-Write] Enable Material Parameter Caching

  • exclude_for_specific_hlod_levels (Array(int32)): [Read-Write] Exclude for Specific HLODLevels: Which specific HLOD levels this component should be excluded from

  • exclude_from_light_attachment_group (bool): [Read-Write] Exclude from Light Attachment Group: If set, then it overrides any bLightAttachmentsAsGroup set in a parent.

  • face_material (MaterialInterface): [Read-Write] Face Material: Used when rendering the face mesh (mostly debug reasons)

  • fill_collision_underneath_for_navmesh (bool): [Read-Write] Fill Collision Underneath for Navmesh: If set, navmesh will not be generated under the surface of the geometry

  • force_mip_streaming (bool): [Read-Write] Force Mip Streaming: If true, forces mips for textures used by this component to be resident when this component’s level is loaded.

  • generate_overlap_events (bool): [Read-Write] Generate Overlap Events

  • hidden_in_game (bool): [Read-Write] Hidden in Game: Whether to hide the primitive in game, if the primitive is Visible.

  • hidden_in_scene_capture (bool): [Read-Write] Hidden in Scene Capture: When true, will not be captured by Scene Capture

  • hlod_batching_policy (HLODBatchingPolicy): [Read-Write] HLODBatching Policy: Determines how the geometry of a component will be incorporated in proxy (simplified) HLODs.

  • ignore_radial_force (bool): [Read-Write] Ignore Radial Force: Will ignore radial forces applied to this component.

  • ignore_radial_impulse (bool): [Read-Write] Ignore Radial Impulse: Will ignore radial impulses applied to this component.

  • indirect_lighting_cache_quality (IndirectLightingCacheQuality): [Read-Write] Indirect Lighting Cache Quality: Quality of indirect lighting for Movable primitives. This has a large effect on Indirect Lighting Cache update time.

  • is_editor_only (bool): [Read-Write] Is Editor Only: If true, the component will be excluded from non-editor builds

  • ld_max_draw_distance (float): [Read-Write] LDMax Draw Distance: Max draw distance exposed to LDs. The real max draw distance is the min (disregarding 0) of this and volumes affecting this object.

  • light_attachments_as_group (bool): [Read-Write] Light Attachments as Group: Whether to light this component and any attachments as a group. This only has effect on the root component of an attachment tree. When enabled, attached component shadowing settings like bCastInsetShadow, bCastVolumetricTranslucentShadow, etc, will be ignored. This is useful for improving performance when multiple movable components are attached together.

  • lighting_channels (LightingChannels): [Read-Write] Lighting Channels: Channels that this component should be in. Lights with matching channels will affect the component. These channels only apply to opaque materials, direct lighting, and dynamic lighting and shadowing.

  • lightmap_type (LightmapType): [Read-Write] Lightmap Type: Controls the type of lightmap used for this component.

  • min_draw_distance (float): [Read-Write] Min Draw Distance: The minimum distance at which the primitive should be rendered, measured in world space units from the center of the primitive’s bounding sphere to the camera position.

  • mobility (ComponentMobility): [Read-Write] Mobility: How often this component is allowed to move, used to make various optimizations. Only safe to set in constructor.

  • multi_body_overlap (bool): [Read-Write] Multi Body Overlap: If true, this component will generate individual overlaps for each overlapping physics body if it is a multi-body component. When false, this component will generate only one overlap, regardless of how many physics bodies it has and how many of them are overlapping another component/body. This flag has no influence on single body components.

  • never_distance_cull (bool): [Read-Write] Never Distance Cull: When enabled this object will not be culled by distance. This is ignored if a child of a HLOD.

  • on_begin_cursor_over (ComponentBeginCursorOverSignature): [Read-Write] On Begin Cursor Over: Event called when the mouse cursor is moved over this component and mouse over events are enabled in the player controller

  • on_clicked (ComponentOnClickedSignature): [Read-Write] On Clicked: Event called when the left mouse button is clicked while the mouse is over this component and click events are enabled in the player controller

  • on_component_activated (ActorComponentActivatedSignature): [Read-Write] On Component Activated: Called when the component has been activated, with parameter indicating if it was from a reset

  • on_component_begin_overlap (ComponentBeginOverlapSignature): [Read-Write] On Component Begin Overlap: Event called when something starts to overlaps this component, for example a player walking into a trigger. For events when objects have a blocking collision, for example a player hitting a wall, see ‘Hit’ events. note: Both this component and the other one must have GetGenerateOverlapEvents() set to true to generate overlap events. note: When receiving an overlap from another object’s movement, the directions of ‘Hit.Normal’ and ‘Hit.ImpactNormal’ will be adjusted to indicate force from the other object against this object.

  • on_component_deactivated (ActorComponentDeactivateSignature): [Read-Write] On Component Deactivated: Called when the component has been deactivated

  • on_component_end_overlap (ComponentEndOverlapSignature): [Read-Write] On Component End Overlap: Event called when something stops overlapping this component note: Both this component and the other one must have GetGenerateOverlapEvents() set to true to generate overlap events.

  • on_component_hit (ComponentHitSignature): [Read-Write] On Component Hit: Event called when a component hits (or is hit by) something solid. This could happen due to things like Character movement, using Set Location with ‘sweep’ enabled, or physics simulation. For events when objects overlap (e.g. walking into a trigger) see the ‘Overlap’ event. note: For collisions during physics simulation to generate hit events, ‘Simulation Generates Hit Events’ must be enabled for this component. note: When receiving a hit from another object’s movement, the directions of ‘Hit.Normal’ and ‘Hit.ImpactNormal’ will be adjusted to indicate force from the other object against this object. note: NormalImpulse will be filled in for physics-simulating bodies, but will be zero for swept-component blocking collisions.

  • on_component_sleep (ComponentSleepSignature): [Read-Write] On Component Sleep: Event called when the underlying physics objects is put to sleep

  • on_component_wake (ComponentWakeSignature): [Read-Write] On Component Wake: Event called when the underlying physics objects is woken up

  • on_end_cursor_over (ComponentEndCursorOverSignature): [Read-Write] On End Cursor Over: Event called when the mouse cursor is moved off this component and mouse over events are enabled in the player controller

  • on_input_touch_begin (ComponentOnInputTouchBeginSignature): [Read-Write] On Input Touch Begin: Event called when a touch input is received over this component when touch events are enabled in the player controller

  • on_input_touch_end (ComponentOnInputTouchEndSignature): [Read-Write] On Input Touch End: Event called when a touch input is released over this component when touch events are enabled in the player controller

  • on_input_touch_enter (ComponentBeginTouchOverSignature): [Read-Write] On Input Touch Enter: Event called when a finger is moved over this component when touch over events are enabled in the player controller

  • on_input_touch_leave (ComponentEndTouchOverSignature): [Read-Write] On Input Touch Leave: Event called when a finger is moved off this component when touch over events are enabled in the player controller

  • on_released (ComponentOnReleasedSignature): [Read-Write] On Released: Event called when the left mouse button is released while the mouse is over this component click events are enabled in the player controller

  • only_owner_see (bool): [Read-Write] Only Owner See: If this is True, this component will only be visible when the view actor is the component’s owner, directly or indirectly.

  • override_materials (Array(MaterialInterface)): [Read-Write] Override Materials: Material overrides.

  • owner_no_see (bool): [Read-Write] Owner No See: If this is True, this component won’t be visible when the view actor is the component’s owner, directly or indirectly.

  • physics_volume_changed_delegate (PhysicsVolumeChanged): [Read-Write] Physics Volume Changed Delegate: Delegate that will be called when PhysicsVolume has been changed *

  • primary_component_tick (ActorComponentTickFunction): [Read-Write] Primary Component Tick: Main tick function for the Component

  • ray_tracing_group_culling_priority (RayTracingGroupCullingPriority): [Read-Write] Ray Tracing Group Culling Priority: Defines how quickly it should be culled. For example buildings should have a low priority, but small dressing should have a high priority.

  • ray_tracing_group_id (int32): [Read-Write] Ray Tracing Group Id: Defines run-time groups of components. For example allows to assemble multiple parts of a building at runtime. -1 means that component doesn’t belong to any group.

  • receive_mobile_csm_shadows (bool): [Read-Write] Receive Mobile CSMShadows: Mobile only: If disabled this component will not receive CSM shadows. (Components that do not receive CSM may have reduced shading cost)

  • receives_decals (bool): [Read-Write] Receives Decals: Whether the primitive receives decals.

  • relative_location (Vector): [Read-Write] Relative Location: Location of the component relative to its parent

  • relative_rotation (Rotator): [Read-Write] Relative Rotation: Rotation of the component relative to its parent

  • relative_scale3d (Vector): [Read-Write] Relative Scale 3D: Non-uniform scaling of the component relative to its parent. Note that scaling is always applied in local space (no shearing etc)

  • render_custom_depth (bool): [Read-Write] Render Custom Depth: If true, this component will be rendered in the CustomDepth pass (usually used for outlines)

  • render_in_depth_pass (bool): [Read-Write] Render in Depth Pass: If true, this component will be rendered in the depth pass even if it’s not rendered in the main pass

  • render_in_main_pass (bool): [Read-Write] Render in Main Pass: If true, this component will be rendered in the main pass (z prepass, basepass, transparency)

  • replicate_physics_to_autonomous_proxy (bool): [Read-Write] Replicate Physics to Autonomous Proxy: True if physics should be replicated to autonomous proxies. This should be true for

    server-authoritative simulations, and false for client authoritative simulations.

  • replicates (bool): [Read-Write] Replicates: Is this component currently replicating? Should the network code consider it for replication? Owning Actor must be replicating first!

  • return_material_on_move (bool): [Read-Write] Return Material on Move: If true, component sweeps will return the material in their hit result. see: MoveComponent(), FHitResult

  • runtime_virtual_textures (Array(RuntimeVirtualTexture)): [Read-Write] Runtime Virtual Textures: Array of runtime virtual textures into which we draw the mesh for this actor. The material also needs to be set up to output to a virtual texture.

  • self_shadow_only (bool): [Read-Write] Self Shadow Only: When enabled, the component will only cast a shadow on itself and not other components in the world. This is especially useful for first person weapons, and forces bCastInsetShadow to be enabled.

  • should_update_physics_volume (bool): [Read-Write] Should Update Physics Volume: Whether or not the cached PhysicsVolume this component overlaps should be updated when the component is moved. see: GetPhysicsVolume()

  • single_sample_shadow_from_stationary_lights (bool): [Read-Write] Single Sample Shadow from Stationary Lights: Whether the whole component should be shadowed as one from stationary lights, which makes shadow receiving much cheaper. When enabled shadowing data comes from the volume lighting samples precomputed by Lightmass, which are very sparse. This is currently only used on stationary directional lights.

  • trace_complex_on_move (bool): [Read-Write] Trace Complex on Move: If true, component sweeps with this component should trace against complex collision during movement (for example, each triangle of a mesh). If false, collision will be resolved against simple collision bounds instead. see: MoveComponent()

  • transform_setting (ARCoreFaceComponentTransformMixing): [Read-Write] Transform Setting: Determines how the transform from tracking data and the component’s transform are mixed together

  • translucency_sort_distance_offset (float): [Read-Write] Translucency Sort Distance Offset: Modified sort distance offset for translucent objects in world units. A positive number will move the sort distance further and a negative number will move the distance closer.

    Ignored if the object is not translucent. Warning: Adjusting this value will prevent the renderer from correctly sorting based on distance. Only modify this value if you are certain it will not cause visual artifacts.

  • translucency_sort_priority (int32): [Read-Write] Translucency Sort Priority: Translucent objects with a lower sort priority draw behind objects with a higher priority. Translucent objects with the same priority are rendered from back-to-front based on their bounds origin. This setting is also used to sort objects being drawn into a runtime virtual texture.

    Ignored if the object is not translucent. The default priority is zero. Warning: This should never be set to a non-default value unless you know what you are doing, as it will prevent the renderer from sorting correctly. It is especially problematic on dynamic gameplay effects.

  • treat_as_background_for_occlusion (bool): [Read-Write] Treat as Background for Occlusion: Treat this primitive as part of the background for occlusion purposes. This can be used as an optimization to reduce the cost of rendering skyboxes, large ground planes that are part of the vista, etc.

  • use_as_occluder (bool): [Read-Write] Use as Occluder: Whether to render the primitive in the depth only pass. This should generally be true for all objects, and let the renderer make decisions about whether to render objects in the depth only pass. todo: if any rendering features rely on a complete depth only pass, this variable needs to go away.

  • use_async_cooking (bool): [Read-Write] Use Async Cooking: Controls whether the physics cooking should be done off the game thread. This should be used when collision geometry doesn’t have to be immediately up to date (For example streaming in far away objects)

  • use_attach_parent_bound (bool): [Read-Write] Use Attach Parent Bound: If true, this component uses its parents bounds when attached. This can be a significant optimization with many components attached together.

  • use_complex_as_simple_collision (bool): [Read-Write] Use Complex as Simple Collision: Controls whether the complex (Per poly) geometry should be treated as ‘simple’ collision. Should be set to false if this component is going to be given simple collision and simulated.

  • virtual_texture_cull_mips (int8): [Read-Write] Virtual Texture Cull Mips: Number of lower mips in the runtime virtual texture to skip for rendering this primitive. Larger values reduce the effective draw distance in the runtime virtual texture. This culling method doesn’t take into account primitive size or virtual texture size.

  • virtual_texture_lod_bias (int8): [Read-Write] Virtual Texture Lod Bias: Bias to the LOD selected for rendering to runtime virtual textures.

  • virtual_texture_min_coverage (int8): [Read-Write] Virtual Texture Min Coverage: Set the minimum pixel coverage before culling from the runtime virtual texture. Larger values reduce the effective draw distance in the runtime virtual texture.

  • virtual_texture_render_pass_type (RuntimeVirtualTextureMainPassType): [Read-Write] Virtual Texture Render Pass Type: Controls if this component draws in the main pass as well as in the virtual texture.

  • visible (bool): [Read-Write] Visible: Whether to completely draw the primitive; if false, the primitive is not drawn, does not cast a shadow.

  • visible_in_ray_tracing (bool): [Read-Write] Visible in Ray Tracing: If true, this component will be visible in ray tracing effects. Turning this off will remove it from ray traced reflections, shadows, etc.

  • visible_in_real_time_sky_captures (bool): [Read-Write] Visible in Real Time Sky Captures: If true, this component will be visible in real-time sky light reflection captures.

  • visible_in_reflection_captures (bool): [Read-Write] Visible in Reflection Captures: If true, this component will be visible in reflection captures.

  • visible_in_scene_capture_only (bool): [Read-Write] Visible in Scene Capture Only: When true, will only be visible in Scene Capture

  • wants_collision (bool): [Read-Write] Wants Collision: Indicates whether collision should be created for this face mesh. This adds significant cost, so only use if you need to trace against the face mesh.

property auto_bind_to_local_face_mesh

[Read-Only] Auto Bind to Local Face Mesh: If true, the mesh data will come from the local ARKit face mesh data. The face mesh will update every tick and will handle loss of face tracking

Type

(bool)

bind_ar_face_geometry(face_geometry) None

Bind this FaceMeshComponent to the given UARFaceGeometry object.

Parameters

face_geometry (ARFaceGeometry) – The target UARFaceGeometry pointer. Passing nullptr to unbind the previous UARFaceGeometry.

create_mesh(vertices, triangles, uv0) None

Create the initial face mesh from raw mesh data

Parameters
  • vertices (Array(Vector)) – Vertex buffer of all vertex positions to use for this mesh section.

  • triangles (Array(int32)) – Index buffer indicating which vertices make up each triangle. Length must be a multiple of 3.

  • uv0 (Array(Vector2D)) – Optional array of texture co-ordinates for each vertex. If supplied, must be same length as Vertices array.

property face_material

[Read-Only] Face Material: Used when rendering the face mesh (mostly debug reasons)

Type

(MaterialInterface)

get_transform() Transform

Get the transform that the AR camera has detected

Return type

Transform

set_auto_bind(auto_bind) None

If auto bind is true, then this component will update itself from the local face tracking data each tick. If auto bind is off, use BindARFaceGeometry function to bind to a particular UARFaceGeometry.

Parameters

auto_bind (bool) – true to enable, false to disable

property transform_setting

[Read-Only] Transform Setting: Determines how the transform from tracking data and the component’s transform are mixed together

Type

(ARCoreFaceComponentTransformMixing)

update_mesh(vertices) None

Updates the face mesh vertices. The topology and UVs do not change post creation so only vertices are updated

Parameters

vertices (Array(Vector)) – Vertex buffer of all vertex positions to use for this mesh section.

property wants_collision

[Read-Only] Wants Collision: Indicates whether collision should be created for this face mesh. This adds significant cost, so only use if you need to trace against the face mesh.

Type

(bool)