`unreal.Vector4`¶

class unreal.Vector4(x: float = 0.0, y: float = 0.0, z: float = 0.0, w: float = 0.0)

Bases: `StructBase`

A 4-D homogeneous vector. note: The full C++ class is located here: EngineSourceRuntimeCorePublicMathVector4.h

C++ Source:

• Module: CoreUObject

• File: NoExportTypes.h

Editor Properties: (see get_editor_property/set_editor_property)

• `w` (double): [Read-Write] W

• `x` (double): [Read-Write] X

• `y` (double): [Read-Write] Y: Alias for float/double depending on LWC status. Note: Will be refactored to double before UE5 ships.

• `z` (double): [Read-Write] Z

ZERO: Vector4

4D vector zero constant (0,0,0)

Type:

(Vector4)

• `Vector4` Returns addition of Vector A and Vector B (A + B)

__eq__(other: object) bool

• `Vector4` Returns true if vector A is equal to vector B (A == B)

• `Vector4` Returns addition of Vector A and Vector B (A + B)

__imul__(other: Vector4) None

• `Vector4` Element-wise Vector multiplication (Result = {A.x*B.x, A.y*B.y, A.z*B.z, A.w*B.w})

__isub__(other: Vector4) None

• `Vector4` Returns subtraction of Vector B from Vector A (A - B)

__mul__(other: Vector4) None

• `Vector4` Element-wise Vector multiplication (Result = {A.x*B.x, A.y*B.y, A.z*B.z, A.w*B.w})

__ne__(other: object) bool

• `Vector4` Returns true if vector A is not equal to vector B (A != B) within a specified error tolerance

__neg__() None

Gets a negated copy of the vector. Equivalent to -Vector for scripts.

__or__(other: Vector4) None

__sub__(other: Vector4) None

• `Vector4` Returns subtraction of Vector B from Vector A (A - B)

__truediv__(other: Vector4) None

• `Vector4` Element-wise Vector divide (Result = {A.x/B.x, A.y/B.y, A.z/B.z, A.w/B.w})

Returns addition of Vector A and Vector B (A + B)

Parameters:

b (Vector4) –

Return type:

Vector4

assign(vector) None

Assign the values of the supplied vector.

Parameters:

vector (Vector4) – Vector to copy values from.

cross3(b)

Returns the cross product of two vectors - see http://mathworld.wolfram.com/CrossProduct.html

Parameters:

b (Vector4) –

Return type:

Vector4

divide(b)

Element-wise Vector divide (Result = {A.x/B.x, A.y/B.y, A.z/B.z, A.w/B.w})

Parameters:

b (Vector4) –

Return type:

Vector4

dot(b) double

Returns the dot product of two vectors - see http://mathworld.wolfram.com/DotProduct.html

Parameters:

b (Vector4) –

Return type:

double

dot3(b) double

Returns the dot product of two vectors - see http://mathworld.wolfram.com/DotProduct.html The W element is ignored.

Parameters:

b (Vector4) –

Return type:

double

equals(b) bool

Returns true if vector A is equal to vector B (A == B)

Parameters:

b (Vector4) –

Return type:

bool

is_nan() bool

Determines if any component is not a number (NAN)

Returns:

true if one or more components is NAN, otherwise false.

Return type:

bool

is_near_equal(b, error_tolerance=0.000100) bool

Returns true if vector A is equal to vector B (A == B) within a specified error tolerance

Parameters:
Return type:

bool

is_nearly_zero3(tolerance=0.000100) bool

Checks whether vector is near to zero within a specified tolerance. The W element is ignored.

Parameters:

tolerance (float) – Error tolerance.

Returns:

true if vector is in tolerance to zero, otherwise false.

Return type:

bool

is_normal3() bool

Determines if vector is normalized / unit (length 1). The W element is ignored.

Returns:

true if normalized, false otherwise.

Return type:

bool

is_not_near_equal(b, error_tolerance=0.000100) bool

Returns true if vector A is not equal to vector B (A != B) within a specified error tolerance

Parameters:
Return type:

bool

is_unit3(squared_lenth_tolerance=0.000100) bool

Determines if vector is normalized / unit (length 1) within specified squared tolerance. The W element is ignored.

Parameters:

squared_lenth_tolerance (float) –

Returns:

true if unit, false otherwise.

Return type:

bool

is_zero() bool

Checks whether all components of the vector are exactly zero.

Returns:

true if vector is exactly zero, otherwise false.

Return type:

bool

length() double

Returns the length of the vector.

Return type:

double

length3() double

Returns the length of the vector. The W element is ignored.

Return type:

double

length_squared() double

Returns the squared length of the vector.

Return type:

double

length_squared3() double

Returns the squared length of the vector. The W element is ignored.

Return type:

double

mirror_by_vector3(surface_normal)

Given a direction vector and a surface normal, returns the vector reflected across the surface normal. Produces a result like shining a laser at a mirror! The W element is ignored.

Parameters:

surface_normal (Vector4) – A normal of the surface the ray should be reflected on.

Returns:

Reflected vector.

Return type:

Vector4

multiply(b)

Element-wise Vector multiplication (Result = {A.x*B.x, A.y*B.y, A.z*B.z, A.w*B.w})

Parameters:

b (Vector4) –

Return type:

Vector4

negated()

Gets a negated copy of the vector. Equivalent to -Vector for scripts.

Return type:

Vector4

normal3(tolerance=0.000100)

Gets a normalized unit copy of the vector, ensuring it is safe to do so based on the length. The W element is ignored and the returned vector has W=0. Returns zero vector if vector length is too small to safely normalize.

Parameters:

tolerance (float) – Minimum squared vector length.

Returns:

A normalized copy if safe, (0,0,0) otherwise.

Return type:

Vector4

normal_unsafe3()

Calculates normalized unit version of vector without checking for zero length. The W element is ignored and the returned vector has W=0.

Returns:

Normalized version of vector.

Return type:

Vector4

normalize3(tolerance=0.000000) None

Normalize this vector in-place if it is large enough or set it to (0,0,0,0) otherwise. The W element is ignored and the returned vector has W=0.

Parameters:

tolerance (float) – Minimum squared length of vector for normalization.

not_equal(b) bool

Returns true if vector A is not equal to vector B (A != B) within a specified error tolerance

Parameters:

b (Vector4) –

Return type:

bool

quaternion() Quat

Return the Quaternion orientation corresponding to the direction in which the vector points. Similar to the FRotator version, returns a result without roll such that it preserves the up vector. note: If you don’t care about preserving the up vector and just want the most direct rotation, you can use the faster ‘FQuat::FindBetweenVectors(FVector::ForwardVector, YourVector)’ or ‘FQuat::FindBetweenNormals(…)’ if you know the vector is of unit length.

Returns:

Quaternion from the Vector’s direction, without any roll.

Return type:

Quat

rotator()

Return the FRotator orientation corresponding to the direction in which the vector points. Sets Yaw and Pitch to the proper numbers, and sets Roll to zero because the roll can’t be determined from a vector.

Returns:

FRotator from the Vector’s direction, without any roll.

Return type:

Rotator

set(x, y, z, w) None

Set the values of the vector directly.

Parameters:
• x (double) –

• y (double) –

• z (double) –

• w (double) –

subtract(b)

Returns subtraction of Vector B from Vector A (A - B)

Parameters:

b (Vector4) –

Return type:

Vector4

vector()

Convert a Vector4 to a Vector (dropping the W element)

Return type:

Vector

property w: float

Type:

(double)

property x: float

Type:

(double)

property y: float

[Read-Write] Y: Alias for float/double depending on LWC status. Note: Will be refactored to double before UE5 ships.

Type:

(double)

property z: float

Type:

(double)