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Preface

MathEngine Karma is a physics and collision detection software package. Software libraries are provided
that contain routines that users can call on to quickly and easily add physical behaviour to their 2D or 3D
environment. While the Karma product is suitable for a wide range of applications users should note that it is
targeted at the games and entertainment markets. This userguide provides a background to the subject and
introduces the Karma package, before going on to explain in detail how Karma can be used and integrated
into a project. Karma is aimed at developers of real-time entertainment simulation software who are familiar
with the C programming language and have a basic knowledge of maths. Experience with Microsoft Visual
C++ is an asset. The source that is provided is in C. Karma uses a C API.

In broad terms Karma consists of collision detection and dynamic simulation modules that may be used
alone or together. The Karma Bridge (Mst Library) provides an API that simplifies the interoperation of Karma
Dynamics (Mdt Library) and Karma Collision (Mcd Library). A basic cross platform renderer that wraps the
DirectX and OpenGL graphics libraries is provided. While this allows users to build 3D applications with
simple scenes, it is intended that users will integrate Karma with their own rendering solution.

Karma is available for:
¢ Win32 built in single precision against the Microsoft LIBC, LIBCMT or MSVCRT libraries.
+ the Sony PlayStation®2 games console.
« the Xbox games console.
¢ Win32 double precision and Linux versions on request.

Information about each library function is provided in the html online documentation that can be found by
following the ‘Demos and Manuals’ hyperlink in the index.html file in the metoolkit directory.

Preface
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The origins of physical simulation, and how it has developed from the early days of electronic games through
to the recent introduction of what have become known as Physics Engines, are discussed in chapter 1.

Chapter 2 introduces MathEngine’s Karma product - a physics engine - and outlines what it can be used for,
and how it works. The internal data structures are discussed, along with the data flow during a game. An
example of two spheres colliding is used to demonstrate this.

Chapter 3 presents Karma Dynamics, including discussions on the units, scale, coordinate system and
reference frames used. The dynamics library functions are discussed and demonstrated with explanations
of relevant physical behavior and the provision of user examples - from basic user functionality through to
more advanced usage of Karma'’s libraries. World properties, bodies, constraints and forces are introduced.

In chapter 4 an overview of collision detection is given, with an explanation of how the three main parts of
Karma, namely Karma Dynamics, Karma Collision and the Karma Simulation Toolkit, work together. The
distinction between collision primitives, aggregates, and static models is made and examples of their
implementation provided. Determination of object intersection in a game environment is demonstrated,
along with line of sight tests to determine any objects that lie on a line joining two points in 3D space.
Change blocks are introduced and the user is told how, and (importantly) when, to update collision model
information.

Chapter 5 discusses the simulation toolkit or bridge, which can be used at the high level to control Karma
dynamics and collision.

Chapter 6 provides valuable developer information that summarizes the main do’s and don’ts when using
Karma. A number of important points are listed and later discussed. These will help when building
simulations using Karma. Following this is a section that contains, in part, answers to questions that have
been asked by developers using Karma.

The internal performance of Karma is discussed in Chapter 7, with specific information on x86 and
PlayStation®2 performance provided for game relevant scenarios. Recent computational methods that are
used in physical simulation are introduced - Mirtich’ method, Penalty Methods and LCP-type methods. The
improvements made by platform specific optimization is demonstrated and the improvements in speed
through identifying platform specfic internal 'hotspots’ in the software discussed.

Finally the eighth chapter comprises a user tutorial that takes a user through the steps required to build a
Karma simulation of a character riding a quadbike over a static terrrain.

The appendices provide:
» default values of Karma properties
» a basic discussion of the Karma viewer

* an explanation of how Karma manages its memory, with example game scenarios provided to
demonstrate memory allocation

» aconstraint reference specification
A glossary of terms and a bibliography form the last two sections.

Typographical Conventions

Bold Face: e User Interface element names (except for the standard OK
and Cancel buttons)

« Commands
* Document and book titles

e Courier: ¢ Program code
« Directory and file names

Italics: » Cross-references
¢ Introduction of a new word or a new concept

" Preface
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About MathEngine

Founded in Oxford, UK in 1997, MathEngine provides physical simulation software that gives developers the
ability to add physical behavior to applications for use in the games and entertainment markets.

Contacting MathEngine

Head Office
MathEngine PLC, 60, St. Aldates, Oxford, UK. OX1 1ST.
Tel.+44 (0)1865 799400 Fax +44 (0)1865 799401

Web Site

www.mathengine.com

Customer Technical Support

support@mathengine.com

General inquiries

sales@mathengine.com
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Introduction

This chapter provides a background to physical simulation, from a historical perspective right up to the
techniques currently employed on modern day computing systems. From the empirical physical laws first
formulated hundreds of years ago, to the present techniques that are based on these straightforward laws
and employed in software such as the Karma package supplied by MathEngine, physical simulation is
finding its way into a diverse range of applications.

Introduction ¢ 1
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Historical Background

It is convenient to begin during the seventeenth century when Isaac Newton stated his three empirical
physical laws describing the dynamical response of an object under the application of an external force. We
are all introduced to these laws in secondary school, and they form the basis of the deterministic physical
simulation methods that are employed today. Newtonian rigid body dynamics (RBD) has been around for a
long time, and the mathematics describing such systems in the public domain. However, it is only in
comparatively recent years that extensive investigation, modelling and research into simulation has been
made possible by the advent of automatic calculating machines with the ability to perform the necessary
calculations. The current status of this technology is such that mathematical models that describe the time
evolution of physical systems of rigid bodies can be implemented on low end PCs and games consoles
targeted at the home computer market.

RBD describes the behavior of a system whose elements are considered to be rigid. Rigid bodies have
infinite hardness and do not deform. Even though this restriction simplifies the mathematics used to describe
such systems, analytical solutions exist only for very simple systems, and thus we must turn to numerical
methods. Multi-body systems are also subject to the so-called butterfly effect, in which very small changes or
inaccuracies in initial configurations can build up over time into large deviations, producing widely varying
behavior. For example, when breaking in a game of snooker or pool, no matter how carefully you set the
game up, the slight errors in the position of the balls build up to the macroscopic level, resulting in a unique
break every time.

In physical computer simulations, the inherent uncertainties in initial configuration and the limits imposed by
the calculating machine mean that systems cannot be modelled exactly, only a possible evolution path
predicted. MathEngine’s Karma software utilises predictive methods to find such a path.

Application to entertainment

Since the early days of TV and computer games
the entertainment software market has been
striving to provide better entertainment solutions.
Within the home user budget, increasingly more
powerful computers systems are becoming
available, and in turn better gaming experiences.
While the improvements in graphics over the last
decade are very apparent, the solutions available
to improve realism are not so well known. A
potential revolution may be in the making in the
area of 'game / virtual world' response and
realism. While things have been slow to take off -
mainly because of the changes this will bring about in gaming methodology - the coming years will bring a
new genre of coding tools to the hands of the games programmer in the form of methods to add physical
behavior to an environment. These new tools have led to the coining of the phrase 'Physics Engine'.

2 « Introduction
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Physics Engines

To explain the potential of physics engines, we need to consider the current solution to handling object
behavior in a simulated game environment. This falls into two categories, namely scripted behavior
(animation), and bespoke solutions:

Scripted behavior is a predefined sequence of events used to define the path through time of a game object.
For example, consider a racing car rounding a bend. The way the car behaves is determined by certain
properties when it comes into the bend. A scripted solution chooses a sequence from a library of pre-
recorded sequences, the chosen sequence depending on the approach parameters of the car to the bend.

A bespoke solution looks at the specific problem and solves it by applying the appropriate mathematical
equations to work out what a body should do. For example if a car is being driven over a terrain with the
accelerator down and the accelerator pedal is released, friction between the wheels and the ground, and
frictional drag caused by air resistance, are the cause of two forces that act to slow the car down. The drag
force could be coded with an equation that decreases the wind resistance drag force as the car slows down.

The paradigm shift with a physics engine is that the engine implements a general mathematical model of
real-world objects and their interactions. The application configures the model and defines the objects within
it, and the physics engine evolves the positions and velocities of the objects over time in response to inputs
from the application. So in the example above, the application would define a model for the terrain, and a
model of the car, including such things as its wheels, its suspension and steering mechanisms. To simulate
wind resistance on the car, the application would use an API function, perhaps of the form Set Dr ag( car,
drag val ue). Similarly, for a car rounding a corner, the properties of friction, velocity, drag, mass and mass
distribution could be entered into the physics engine and the cars natural behavior calculated according to
physical laws that act in the real world. This option can be used on its own or combined with some other
solution. You can move from your scripted scene to a physics engine and back if you want to use physics to
provide a more realistic approach to a certain situation.

To use a physics toolkit effectively requires the understanding of concepts such as drag, and the learning of
new skills such as knowing how best to join one body to another. But the underlying mathematical functions
are already there to use, which can save time prototyping and building a project. Game physics
programmers will have a new set of tools at their disposal that will provide fast, stable implementations of
foundational algorithms, allowing them to focus on advanced modeling technigques and game-specific
features, and therefore to implement better physical behavior within their available budget. Physics providers
are working to improve the speed, stability and accuracy, through improved mathematical methods,
optimized code and more accurate physical modelling. This would usually be beyond the resources of a
single games project.

A physics engine that solves mathematical systems of rigid articulated objects with frictional contacts can
realistically simulate

e car games with obstacles

¢ large mechanical systems

* robots, humans and creatures

« fighting games with a large number of contacts and occasional jointed systems

Another important point to note about physics engines is that while the term 'more realism' is often used
when discussing the addition of physics to games, this does not restrict development to natural behavior. A
physics simulator can alter the real world behavior to give 'cartoon physics' by implementing other physical
laws. Gravity can be high or low, and be made to act up or down. Cars can be light or heavy and the mass
properties altered to give the required response.

Usaget

Let’s take a look at what may or may not be needed by the game developer who is just about to start work on
the next game, and is considering a third party physics solution. What should a developer be considering
when deciding on whether or not to invest in a physics engine? It should be noted that a physics engine
might not always be the most appropriate approach. This may be the case when the amount of physics
required is minimal, or the expertise exists in-house to implement a solution.

Introduction ¢ 3 '
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The goal of any rigid body physics engine is to calculate the motion of a collection of objects giving the
impression that the objects have real world properties such as mass, and respond to real world events and
conditions, such as collisions and forces. The calculated motion should also obey a number of constraints.
For example, objects should not be allowed to pass through each other or the world, and when objects touch
they should experience friction. Objects that are part of articulated structures, such as humans and vehicles,
should move in a way that respects the joints between them.

How might one proceed? The specification requires that game objects behave realistically, and research
leads to some relatively new software solutions on offer, namely physics engines. Why choose to license one
of these in favor of an in-house solution? Let’s look at what needs to be considered for an in-house solution.

There are several algorithms available, but will they fulfil the specification? Featherstone's algorithm™ is fast
and can be used for chain-like structures, but problems are encountered when there are contacts or if the
chain needs to be broken to add another object. Mirtich type methodsT, where one constraint at a time is
satisfied are difficult to make stable, and objects suffer from jitter.

If you need to
* add and remove objects
» simulate complex articulated objects - such as chains, or structures with branches and loops
» simulate friction
* limit joint movement
e simulate motors
* handle contacts

a more general approach such as a Lagrange Multiplier method' is needed. MathEngine's Karma software
uses such a method.

A model using such a general approach which is fast and stable, deals with stiff forces without numerical
instability, and has a reasonable friction model, requires some fairly complicated mathematics that must then
be carefully and efficiently implemented. Given the stringent real time gaming requirements on current low
end platforms, the algorithm may well need simplifying, may not provide the complete solution, and need a
lot of optimization. A collision detection system is also required to produce good predictive behavior.

There are numerous papers in the public domain' that discuss the problems that need to be addressed, and
provide solutions in some of the areas. However, the time available to the game developer to build and
optimize this basic functionality may be limited. Physics Engines provide a solution: the basic problems that
a game physics programmer would need to overcome have been solved, allowing the programmer to build a
solution more quickly and concentrate on adding further, better physics and features to improve playability.

Whether you decide to go it alone or buy a package to make it easier for you, physics engines are here to
stay. Current games processors are fast enough to satisfy many of the requirements of game physics, and
future improvements will lead to ever better real-time simulation.

t - Please refer to the bibliography at the end of this userguide.
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Overview

It is convenient in simulation to represent a virtual world object as three separate parts, namely the dynamic
body, collision frame and rendered object. These can be manipulated individually, but are more likely to be
linked by using the same position and orientation information for each. The dynamic body has no knowledge
of its extent save for the mass distribution of the extended shape. The collision properties of an object
determine its extent in 3D space and are used to determine whether this object collides with another. An
object is in collision with another object when it is not the only object to occupy a particular volume in the 3D
space in which it exists. The rendered object is a visual display of what is going on in the virtual world. A
physics simulation with collision detection can evolve without any graphical display. However it is often
convenient for the user to render the scene to observe the behavior.

Dynamics Object Collision Object Render Object

Karma Simulation

At a basic level, the Karma simulation process can be described in three steps:
1 The user describes at the API level a closed system at time instant t.
2 Aninternal mathematical representation of the system is built by the software.
3 The system is evolved, with account taken of any new objects entering the system or additional forces
arising, at a future time t'.
Step 1.
This involves defining:

» the objects that make up the system. Physical properties such
as mass, position and velocity are specified.

e any constraints (joints or contacts) on the system.
These are contact forces arising from two bodies interacting.

» world properties such as any fields that all objects in that world
will interact with, for example a gravitational force field.

Force fields are non-contact forces that act on objects without
physically contacting them.

gravity

Constraints are of two types:

» Equality constraints. A particular restriction on a body, or a
pair of bodies is imposed. For example, you could say that
specified points on two objects must remain coincident, yet the
bodies can rotate freely around one another. This constraint is a Ball and Socket joint, and the
application programmer would specify it as such.

* Inequality constraints. As an example consider that the user has specified body fifteen in a twenty
body simulation as being a solid sphere of radius ten meters. No other object can penetrate the surface
of body fifteen, or occupy the same space. Mathematically this is conveniently expressed as an
inequality constraint.

76 » The Structure of Karma
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To maintain constraints, the system must be continually checked as it is dynamically evolved to see if any
objects are colliding. The user would create collision models to describe the shapes of the bodies in the
world, that the collision detection system would then use.

Contact properties such as the type and parameters of the friction model can be specified, to govern how
colliding bodies behave.

Step 2.

A matrix equation is built to represent the way forces and constraints act on each body. This is used to
compute the forces on each body required to maintain the constraints.

Step 3.

An integrator is used to move the system forward in time by some user specified increment, At. The
requirements of this process are that:

« the system be evolved at a certain speed e.g. real time.
« the system remain stable.
< evolution is accurate from the perspective of the user.

These requirements are interdependent. For example, reducing At usually increases accuracy and may
improve stability, with an associated increase in the time required for simulation.

The Structure of Karma ¢ 7
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The Karma Pipeline

The execution of Karma within a particular frame can be viewed as a pipeline, with each stage producing
information which is used by the next. Typically the pipeline stages execute in each frame as shown in the
following diagram, with rendering and user interaction being performed between runs of the pipeline.

Transformation
matrices

Collision Detection
farfield

List of potentially
intersecting pairs

Intersection Tests

List of contact
constraints

Mdt (Dynamics)

(Partitioning and Freezing)

) Partitioned
Joint

constraint list
constraints l

BCL (Basic Constraints)

(Builds J Matrix)

Body state j
Kea

(Solves for constraint
forces)

Jacobian matrix, J

Force vector

Body state —l

Euler Integrator

Transformation
matrices

Farfield Collision Detection

The function of the farfield is to detect those pairs of objects which are nearby. In Karma, pairs of objects are
considered to be nearby if their axis-aligned bounding boxes (AABBs) overlap.

78 « The Structure of Karma



MathEngine Karma User Guide

Nearfield Tests

When the pairs of objects that might be in collision have been identified, it is the job of the nearfield tests to
determine whether the objects actually do overlap. Karma dynamics is designed to respond to collisions by
applying forces at a finite number of points, called contacts. Each contact is specified by a position, a normal
and a penetration depth. If the objects intersect, the nearfield test chooses a set of contact points that best

represent the intersection..

r —A— 1
I =1 (L

T
| | - | | . r a -
Farfield Nearfield
L—d L
r 0 L —/1
Gets potentially r \—.— - Calculates contacts
A 7, colliding pairs for_actually colliding
L _/, pairs

Karma’s nearfield algorithms allow arbitrary sets of triangles to be used for non-dynamic objects such as the
terrain. Dynamic objects are typically represented by:

« sphere, box, cylinder or sphyl primitives.
« acollection, or aggregate of these primitives.
e arbitrary convex meshes.

Partitioning and Freezing

Physical simulation becomes more computationally expensive as the number of interacting objects
increases. If there are ten objects in a world that are all mutually constrained, the scene is more difficult to
simulate than when there are ten uncoupled objects because of all the interactions among the linked
structures. Karma separates the world into groups of objects that interact among themselves, but not with
objects in other groups and treats each group separately.

Each group is then examined to determine whether or not the accelerations and velocities of the objects in
the group, and the forces acting on them, are all small enough that simulation will produce no perceptible
change. If this is the case, all the objects in the partition are deactivated: dynamics bodies are disabled, and
their associated collision models are frozen.

BCL

BCL converts Karma'’s high-level constraint representation, formulated in terms, for example, of hinge axes
and joint positions, to a set of matrices and vectors that depend on the parameters of the constraints and the
positions and velocities of the bodies they constrain.

Kea

Karma uses a Lagrange multiplier method to model jointed systems and contacts. In such a model, the effect
of constraints is modeled by forces that act to maintain the constraint. In order to calculate these forces, a
type of matrix problem called a linear complementarity problem (LCP) is solved. Karma's LCP solver is
called Kea. Kea calculates forces which when applied, satisfy the constraints at the end of the time-step.

The word complementarity refers to the fact that related quantities can be required to satisfy a
complementarity condition: that both are non-negative, and at least one is zero. For example, the
complementarity condition for a typical contact specifies that the separation velocity and the force which
maintains non-penetration both have a non-negative component in the direction of the contact normal, and at
least one of them is zero. This means that at the end of the time-step either the contact will be separating
and no force is being applied to enforce non-penetration, or there will be a contact force that prevents the
bodies penetrating and the velocity of the objects towards each other will be zero at the contact point.

The Structure of Karma ¢ 9 '
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Euler Integrator

Because the forces calculated by Kea satisfy the constraints at the end of the time-step, Karma can use an
Euler method to integrate the constraint forces. This provides the guaranteed stability offered by implicit
methods, while taking exactly the same number of operations as an explicit Euler method. This makes Kea
naturally stable, and capable of stably simulating stacks and piles of arbitrary objects without the need for
user tuning or damping. External forces, such as gravity, are explicitly integrated.

710 « The Structure of Karma
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Karma Data Structures

Although Karma has many datatypes, to understand the basic implementation of the pipeline it is necessary
to describe just a few and outline the relationships between them. McdModels and McdModelPairs, and
MdtBodys and MdtContactGroups are small datatypes, that may be created and destroyed frequently during
gameplay. The MdtWorld, McdSpace, and MstBridge are large datatypes that there would usually only be
one of. Naturally these would be created and destroyed infrequently, perhaps when starting or ending a
game level.

McdModels and MdtBodys

McdModel MdtBody

| velocity |

| angular velocity |

| transformation |

An McdModel is the top-level collision data structure containing geometric information about the extent of an
object. It corresponds fairly closely to an MdtBody, which is the data structure containing the physical
properties of an object, such as its mass, position, and velocity. A model may or may not have an associated
body: it may represent a fixed piece of the world for which dynamic simulation is neither desirable nor
necessary.

Typically there are many more objects in a Karma simulation than are being actively processed during a
given time-step. The most important optimization is that when objects are not moving they have the minimum
affect upon performance, which requires that they be culled from the pipeline as early as possible. This is
accomplished by freezing collision models and disabling dynamics bodies that are at rest, where:

* Freezing a model informs collision that the model’s transformation matrix will not change. A frozen
model will not have its AABB updated automatically by the farfield, nor will it be tested for collision
against any other frozen models.

« Disabling a body instructs Karma not to include it in dynamic simulation.

If a model is frozen but has a body that is enabled, the body will be simulated, but contacts against frozen
models (such as the world) will not be generated. So the body will typically fall though the world. If a body is
disabled but its model is not frozen, fresh contacts will be generated for it every frame even though it is not
moving. This will result in correct behavior, but with a loss of performance.

McdModelPairs and MdtContactGroups

McdModelPair - > MdtContactGroup
modell model2 body1 body?2

D

A McdModelPair is a collision data structure that corresponds to a pair of models that have been detected by
the farfield to be sufficiently close that they may be intersecting. McdModelPairs are created as soon as the
axis-aligned bounding boxes (AABBs) of two models overlap, and thus the models possibly, but not
necessarily, intersect. They persist until the AABBs cease to overlap.

The Structure of Karma « 11 '
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If the models in an McdModelPair do intersect, the McdModelPair will have an associated MdtContactGroup.
A MdtContactGroup is a dynamics data structure that contains a list of dynamics contacts together with
dynamics information about the intersection that may be useful on subsequent frames. By contrast with
McdModelPairs, MdtContactGroups are created only when the models in a McdModelPair do actually
intersect. They are destroyed when the McdModelPair is destroyed. Like joints, MdtContactGroups are a
type of constraint.

Since the MdtContactGroup is created from the McdModelPair, generally the order of bodies within it is
inherited from the order of models within the McdModelPair, so the above diagram is representative.
However, it is possible for a collision model not to have a corresponding dynamics body, if for example it
represents an immovable part of the world geometry. In this case, the dynamics body is always bodyl in the
MdtContactGroup, and the body?2 is set to NULL. Hence body1 will be pointed to by whichever of modell and
model2 corresponds to the dynamic body.

MdtWorld, McdSpace, and MstBridge

The MdtWorld is a dynamics data structure that contains all of the dynamics bodies and MdtContactGroups,
along with other entities such as joints, and general data pertaining to dynamics, such as the gravitational
force and threshold values for freezing partitions.

The McdSpace contains the McdModels and McdModelPairs. Its primary function is to detect which pairs of
models have overlapping AABBs, and produce a McdModelPair for each. As a secondary function, in order
to permit the allocation and deallocation of resources associated with colliding pairs, the space implements a
simple protocol for their creation and destruction. Each McdModelPair in the space is in a state that is one of
Hello, Goodbye, and Staying.

» Hello McdModelPairs correspond to pairs of models whose AABBs overlap at the current time-step, but
did not overlap at the previous time-step.

» Staying McdModelPairs correspond to pairs of models whose AABBs overlap at the current and
previous time-steps.

» Goodbye McdModelPairs correspond to pairs of models whose AABBs overlapped on the previous
time-step but not on the current time-step.

Hello and Goodbye pairs are sometimes referred to as transitional pairs, for obvious reasons.

The API function that calculates the set of McdModelPairs on the current time-step is a function on the
space.

The MstBridge contains a material table, which is a table that enables contacts found by nearfield tests to be
augmented with dynamics contact properties such as restitution and friction parameters.
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The Collision farfield is implemented as an axis-aligned sort. It keeps track of the number of axes on which
pairs of models overlap, and when this reaches the number of axes on which sorting is taking place, a
McdModelPair is generated. McdSpaceUpdateAll performs this sorting operation. In order to do this, it
invokes on each model that is not frozen a function to update the model’'s transformation matrix, and
compute its AABB. The transformation matrix and AABB are then cached in the model for later use.

McdSpaceGetPairs

This function reads a fixed number of McdModelPairs from the collision farfield into a container, called a
McdModelPairContainer. Typically the functions McdSpaceGetPairs, MstSpaceHandleTransitions, and
MstSpaceHandleCollisions are executed repeatedly until the set of McdModelPairs in the farfield has been
exhausted.

MstSpaceHandleTransitions

This routine handles the processing for each model pair in a container that is in the Hello or Goodbye state.
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» For Hello pairs Karma orders the models within the pair, because nearfield tests are only implemented
"one way round"”, that is, there is a box-sphere test but no sphere-box test. Then it determines the
intersection function according to the geometry types of the two models, and caches it in the model pair.

» The only special processing performed by Karma for a Goodbye pair is to destroy an associated
MdtContactGroup if one exists.

MstSpaceHandleCollisions

This function calls a nearfield test for every Hello or Staying model pair in a container where at least one of
the models is not frozen. Some of the pairs may represent two moving objects colliding, but others may
represent the collision of a moving object with a mesh of terrain triangles. In the latter case, a callback is
executed from each nearfield test to interrogate the game’s terrain format and determine the set of triangles
that intersect the bounding sphere of the moving object.

The primitive-primitive intersection algorithms are fairly standard and the convex-convex intersection
algorithm used is the Gilbert, Johnson, and Keerthi (GJK) algorithm - please refer to the bibliography. In both
cases proprietary enhancements have been made to calculate penetration depth and ensure that good
contact sets are made.

Each model has an associated material property, and if two models are colliding, the two materials are used
to index into the material table to determine the dynamics parameters for the contact. Dynamics parameters
are copied into the contact structure by value so that they may be changed by the application on a per-
contact basis. The material table also contains callbacks which can be used to parameterize the contact
conversion process.

Unless both models in a McdModelPair are frozen, collision contacts (and therefore dynamics contacts) are
re-created every frame.

MdtUpdatePartitions

A partition is a set of bodies and constraints that can be simulated without reference to any other bodies and
constraints. An alternative definition is that it is a minimal non-empty set of bodies and constraints such that
if a body in the partition shares a constraint with another body, that body and constraint are also in the
partition. Partitions are generated by iterating over the set of enabled bodies that are not yet in a partition,
and adding new bodies by performing a breadth first search of constraints. If a disabled body is found
connected by a constraint to an enabled body, it is automatically enabled. Enabling the body causes a
routine to be invoked in the bridge to unfreeze the corresponding collision model.

It is possible to set a threshold on the number and complexity of a partition, in order to trade simulation
fidelity for speed. If such a threshold is set, the partition may be automatically simplified at this point in order
to bring it down to the required size.

MdtAutoDisable

Karma examines each partition after it has been generated to see if the velocities of objects are sufficiently
small that simulation will produce no perceptible change, and if so, disables all the bodies. Disabling a body
causes a routine to be invoked in the bridge which freezes the corresponding collision model.

MdtPack

MdtPack iterates over the set of partitions, calling the appropriate routine in BCL for each constraint in the
partition. The BCL routine computes the matrix of partial derivatives for the constraint, as well as upper and
lower bounds for constraints such as force-limited motors, friction limits on contacts, and movement limits on
joints.

MdtKeaSolve

Kea, Karma'’s LCP solver, contains the highly optimized per-platform implementations of the matrix and
vector routine required to solve an LCP.

Kea’s constraint formulation is based upon a semi-implicit time-stepping method. Its friction model and
degeneracy protection produce symmetric positive definite LCPs that are guaranteed to have a solution. It
uses an iterative procedure to generate successive candidates that should be closer approximations to the
correct solution, and usually finds the correct solution in a small number of iterations.
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However, there is no general procedure for efficiently solving sets of inequality and complementarity
constraints: in the worst theoretical case, finding the correct solution requires time exponential in the number
of inequality constraints. Physical simulations do not give rise to such pathological LCPs, but it is important
nonetheless to have the option to trade simulation fidelity for speed. There are two possible mechanisms that
a Karma application can use to accomplish this:

« relax the constraint conditions, so that a generated solution is more likely to satisfy the constraints.
o limit the maximum number of iterations.

Either of these mechanisms will result in a loss of fidelity in the simulation. But they offer the option of
reducing the execution time spent in Kea, based on the degree of constraint violations and other non-
physical artifacts that the application can tolerate.

MdtKealntegrate

MdtKealntegrate invokes Karma's Euler integrator to evolve the positions and velocities of bodies using the
forces calculated in MdtKeaSolve.

MdtUnpackForces

Sometimes it is useful to be able to access the constraint forces computed by Kea, for example when using
a friction model that takes as input the normal force at the previous time-step. MdtUnpackForces extracts the
constraint forces for each constraint from Kea'’s internal data representation, and writes them into the
constraint structures.

High Level API

The function MstBridgeUpdateContacts invokes the following functions repeatedly until all pairs in the space
have been processed:

¢ McdSpaceGetPairs
¢ MstBridgeUpdateTransitions
* MstBridgeUpdateCollisions
The function MdtWorldStep invokes the following functions (some indirectly):
¢ MdtWorldUpdatePartitions
¢ MdtAutoDisable
e MdtPack
¢ MdtKeaSolve
* MdtKealntegrate
So the application code to invoke the pipeline can be as simple as

McdSpaceUpdat eAl | (space) ;

Vst Bri dgeUpdat eCont act s(bri dge, space, world);

Mdt Wor | dSt ep(wor | d, st epSi ze) ;
If you are using the MstUniverse API, which provide a convenient wrapper around some of the dynamics and
collision code, the API function MstUniverseStep invokes exactly this sequence of functions.
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Two Spheres Colliding

This example of two spheres moving towards each other, colliding, and rebounding again, illustrates a simple
example of the pipeline in action.

AABBs do not overlap.

McdSpaceUpdateAll updates the AABBs for each of the models because neither is frozen. Since the
bounding boxes do not overlap, no McdModelPair is created.

MstBridgeUpdateContacts:

McdSpaceGetPairs leaves the McdModelPairContainer empty because there are no McdModelPairs in
the space.

MstHandleTransitions does nothing, because there are no Hello or Goodbye pairs.
MstHandleCollisions does nothing, because there are no Hello or Staying pairs.

MdtWorldStep:
MdtUpdatePartitions creates a partition for each sphere, since there is no constraint between them.

MdtAutoDisable examines each partition, but because both of the bodies velocities are above the
threshold, both remain enabled.

MdtPack does nothing, as there are no constraints.
MdtKeaSolve does nothing.

MdtKealntegrate moves the bodies as a result of the current velocities, since there are no forces and
therefore no accelerations.

MdtUnpackForces does nothing.

AABBSs overlap, but the objects do not.

McdSpaceUpdateAll updates the AABBs of each of the models from the previous frame. Now that the
AABBs are overlapping, a McdModelPair is created and classified as a Hello pair.
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MstBridgeUpdateContacts:
McdSpaceGetPairs reads the McdModelPair into the McdModelPairContainer.

MstHandleTransitions reads the pair from the ModelPairContainer, looks up the intersection function
to test for intersection between two spheres, and stores it in the McdModelPair. Because both models
have the same geometry, there is no need to order them appropriately for input to the intersection test.

MstHandleCollisions calls the intersection test and deduces that the spheres do not intersect, so no
contacts are produced.

MdtWorldStep:
MdtUpdatePartitions creates a partition for each sphere.
MdtAutoDisable examines the partitions, and leaves both bodies enabled.
MdtPack does nothing.
MdtKeaSolve does nothing.
MdtKealntegrate moves the objects according to their current velocities.
MdtUnpackForces does nothing.

The AABBs overlap and the spheres touch.

McdSpaceUpdateAll updates the AABBs of the spheres. The AABBs are still overlapping so the pair is
classified as a Staying pair.

MstBridgeUpdateContacts:
McdSpaceGetPairs reads the McdModelPair into the McdModelPairContainer.
MstHandleTransitions does nothing, since there are no Hello or Goodbye pairs.

MstHandleCollisions calls the intersection test for the sphere-sphere contact, and this time determines
that the spheres are touching. It creates a MdtContactGroup, and inserts into it an MdtContact
containing the position, normal and penetration distance for the contact point together with the friction
and restitution parameters.

MdtWorldStep:
MdtUpdatePartions creates just one partition, since the bodies are now constrained by a contact.

MdtAutoDisable examines the partition, but because both spheres have velocities above the threshold
velocities, the bodies remain enabled.

MdtPack finds the function in the basic constraint library (MdtBcl) that processes MdtContactGroups.
This function computes the appropriate input data to Kea based on the position, normal, and
penetration of the contact, the positions and velocities of the spheres, and the restitution and friction
parameters.

MdtKeaSolve calculates the force required to prevent the spheres penetrating, and to generate the
required restitution velocity. It also calculates the accelerations produced by those forces.

MdtKealntegrate uses these accelerations to update the velocities of the spheres, and uses the new
velocities to update the spheres’ positions.

MdtUnpackForces unpacks the forces from Kea's internal data structures into the MdtContactGroup.
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The AABBs overlap, but the spheres are not touching as they move
away.

==

McdSpaceUpdateAll updates the AABBs for each model from the previous frame. The AABBs are still
overlapping, so the pair is still classified as Staying.

MstBridgeUpdateContacts:
McdSpaceGetPairs reads the McdModelPair into the McdModelPairContainer.
MstHandleTransitions does nothing, since there are no Hello or Goodbye pairs.

MstHandleCollisions calls the intersection test for the sphere-sphere contact. There is now no contact
between the two spheres and so the contact is removed from the MdtContactGroup.

MdtWorldStep:
MdtUpdatePartitions creates a partition for each sphere.
MdtAutoDisable leaves the spheres enabled.
MdtPack does nothing.
MdtKeaSolve does nothing.
MdtKealntegrate moves the objects according to their current velocities.
MdtUnpackForces does nothing.

AABBs do not overlap as the spheres move away from each other.

McdSpaceUpdateAll updates the AABB for each sphere from the previous frame. Now the AABBs are not
overlapping, so the McdMcdModelPair becomes a Goodbye pair.

MstBridgeUpdateContacts:
McdSpaceGetPairs reads the McdModelPair into the McdModelPairContainer.

MstHandleTransitions reads the pair from the McdModelPair container and, because it is a Goodbye
pair, destroys the McdModelPair’'s MdtContactGroup.

MstHandleCollisions does nothing, as the only McdModelPair is a Goodbye pair.
MdtWorldStep:

MdtUpdatePartitions leaves each sphere in its own partition.

MdtAutoDisable leaves each sphere enabled.

MdtPack does nothing.

MdtKeaSolve does nothing.
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MdtKealntegrate moves the objects according to their current velocities.
MdtUnpackForces does nothing.

The workings of MdtWorldStep
are exactly the same for stages 1, 2, 4

and 5 because the spheres are not
touching in these cases.
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Conventions

Units and Scaling

There is no built-in system of units in Karma, which is not to say that quantities are dimensionless. Any
system of units may be chosen, either meter-kilogram-seconds, centimeter-grams-seconds or foot-pound-
seconds. However, the programmer is responsible for the consistency of values and dimensions used.

The range of masses and lengths within which Karma will perform well is limited by the precision of the
underlying floating point implementation: single precision floating point (the default build option for Karma on
all platforms) provides for approximately six significant decimal digits. In order to support a variety of scales
of length and mass, Karma requires the application to supply default values of mass and length.

For example, if a human is a medium-sized object in your application, with height 1000 units, and mass 4
units, 1000 is a reasonable value for default length, and 4 a reasonable value for default mass. Input masses
and lengths should not be enormously different to the defaults: about two orders of magnitude either way is
reasonable in single precision. Karma scales all its internal tolerance and threshold values in accordance
with the values you supply, but if you override any of these defaults, you too need to scale your values
appropriately. Time is assumed to be in seconds, and angles measured in radians. If your time and angle
units are different from this Karma'’s defaults will not be appropriate, and you will need to rescale some of the
default values yourself in order to get the best behaviour from Karma. (The units for the default parameters
to the world are given in appendix A)

If, for example, you are working in degrees for angular measurement, you will need to scale Karma'’s default
angular velocity and acceleration thresholds for auto-disabling by 180/ 1. And if the time system with which
you wish to use Karma advances the simulation by 1 unit of time for 1/60 s, you should scale all Karma's
thresholds for autodisabling: velocities by 1/60, and accelerations by 1/3600 . If

Coordinate Systems and Reference Frames

Karma uses rectangular Cartesian coordinates for virtually all vector quantities. Karma does not use polar
coordinates. The components of any 3-dimensional vector are the projections along the x, y, and z axes.
Those axes are orthogonal to each other and the scale along each one is identical. Right-handed coordinate
systems are used everywhere except in the Karma Viewer.

The reference frame used most is called alternately the world, global, inertial or Newtonian reference frame.
These are all names for the same thing: a fixed reference frame which defines the overall orientation and
position of the scene being worked on. This is the common frame of reference for all the objects in an
MdtWorld or an MstUniverse.

There are other useful reference frames however. Each rigid body has defined a reference frame centered
at its center of mass. Points on a rigid body, such as the attachment positions for joints, are naturally
expressed in terms of a fixed location on the rigid body. Note that the joint position is given in the world
reference frame in Karma. As the rigid body moves under the influence of applied forces, that attachment
point will move as seen from the origin of the world reference frame.

Since a 3D model is designed independently of mass properties of the objects it is based on, an artist is likely
to pick a convenient origin that is not the center of mass of the object. This reference frame is called the
model reference frame. A relative transformation between this reference frame and the rigid body center of
mass reference frame can be used to simplify manipulation of geometric models.

The relationship between reference frames consists of a translation and a rotation. If the transformation from
a frame F to a frame G is specified by the translation vector X and the rotation matrix R, then a point whose
coordinates in the frame F are specified by the vector x will have coordinates X + Rx in the frame G.

As is customary in well-known 3D graphics API’s, a transformation between reference frames is conveniently
stored in a 4 by 4 affine matrix containing a 3x3 rotation submatrix R = r;; and a translation vector

t= (tety,t,) -
The MeMatrix4 and MeVector4 data types implement matrices and vectors for use in this way. In this
representation, regular 3D vectors are represented as the first three components of the four dimensional
vectors. The last element in the 4 dimensional vector must be set to 1 if the translation is to be taken into
account and 0 if one is only interested in the rotation.
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Newcomers to this sort of algebra may like to consult a textbook on 3D graphics to familiarize themselves
with the concepts and notations. Utility functions are provided to convert vectors from one reference frame to
another.

Type Conventions

Karma uses some special type definitions and macros that make it more portable. These are defined in
MePr eci si on. h. For example:

« MeReal : floating point numbers

e MeVect or 3: a vector of 3 MeReal s

e« MeVect or 4: a vector of 4 MeReal s

e MeMatri x3: a matrix of 3 MeVect or 3s
e MeMat ri x4: a matrix of 4 MeVect or 4s
e MeSqgrt():sqrt()

Naming Conventions for C Identifiers

Me MathEngine types and macros for controlling precision
Mt Karma Dynamics

Mdt Bel Basic Constraint Library

Mit Kea Kea Solver

mcd Karma Collision

Mst Karma Simulation Toolkit

R Karma Viewer

Calling Conventions
MEAPI is defined in MeCall.h and defines the calling convention used by API functions.

MEPUBLIC is defined in MeCall.h. It expands as appropriate to __declspec(dllexport),
__declspec(dllimport)), or does nothing.
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The MathEngine Dynamics Toolkit (Mdt)

The Mdt Library contains functions that use physical data to mathematically simulate a physical situation.
Real world information such as mass, friction, and gravity can be specified by the user. Because these
simulations take place in a virtual world, the values can be changed by the user to obtain the given behavior,
such as gravity acting upwards, or unphysically heavy objects.

The dynamics library can be used to create rigid bodies and articulated bodies corresponding to the models
(people, robots, vehicles, and other objects) used in games or other 3D simulations. The abstract space
occupied by these bodies is called a world. This world typically corresponds to the scene described by the
rendering software and to the space occupied by any collision models.

The world is a collection of data structures. More than one world can be used in an application, perhaps
corresponding to different regions / levels in a game. Different worlds are totally disconnected from each
other and may never interact. Any interaction would be handled by the programmer. A world may be
partitioned into smaller groups of interacting rigid bodies, where rigid bodies can move from partition to
partition

This world may contain rigid bodies that interact via forces, constraints, and input and output signals. The
bodies may have properties assigned to them that can be used to determine the interaction mechanism. An
input signal enables the user to interact with objects in the world. By reading the:

* (X, y) coordinates of the mouse pointer,
« angle signal from a joystick,
» orinput from a steering wheel or special pedal,
the user can reposition or apply forces to scene objects.

Similarly, an output signal may correspond to the orientation of one of the scene objects. This could be sent
to a force feedback device or a motion platform.

An Mit Wor | d structure is a container that tracks the Mit Body structures along with their joint and contact
constraints. It also stores world (global) properties such as the gravitational field strength.

A constraint - which may conveniently be one of two types - restricts the motion of a rigid body:

» Ajoint between two bodies, such as a hinge to represent the elbow of a virtual human, is a type of
constraint. This constraint restricts at least one of the six degrees of freedom of the attached pair of
bodies (or a body attached directly to the world). The six degrees of freedom comprise three linear and
three rotational degrees of freedom. In 3 dimensional space, the 3 linear degrees of freedom might
correspond to the movement along each of the 3 Cartesian axes, while the 3 rotational degrees of
freedom relate to rotation around each of these axes.

» A contact is a type of constraint that prevents objects inter-penetrating. No permanent restriction is
placed on any of the six degrees of freedom of the contacting objects.

The Mdt Library is the Karma Dynamics top level library. If the Mdt Library is used to build a simulation, then
the lower level MdtBcl Basic Constraint Library does not need to be called directly, although it must still be
linked in. The source code of the Mdt Library can be used as a guide to using the lower level libraries. For
developers using Karma Collision in addition to Karma Dynamics, the Mst library provides tools to integrate
both of these into a simulation library.
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Designing Efficient Simulations Using the Mdt Source Code

Karma Dynamics is distributed with full source code for the Mdt Library. Hence applications can be optimized
by, for example:

« Selecting only the required parts of the Mdt Library.
e Customizing the Mdt code.
< Creating new joint types, based upon Mdt joints.

Designing Efficient Simulations Using the Mdt Library

There are lots of ways of making your simulation go faster using the provided library functions. For example:
¢ Choice of friction model.
« Partitioning of objects in a world.
« Disabling bodies.
« Keeping the constraint matrix size down.
* Level of detail representations.

Rigid Bodies: A Simplified Description of Reality

All the objects in the real world have finite extent and are therefore not well simulated using the 'point mass
model’ of classical physics. The rigid body is an idealization of objects that do not deform easily. It represents
objects that have finite extent but that never deform at all; any two points on the objects are always exactly
the same distance apart, no matter what forces and stresses are applied to the body. In the real world,
objects are not infinitely hard or rigid since they all deform to some extent - even diamond. Having said that,
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infinite rigidity provides a good approximation when modelling the dynamics of solid objects. The assumption
of infinite hardness allows faster simulation speeds to be realized, and hence this approximation is used by
Karma.

Rigid bodies have real world physical properties such as mass and moment of — -
inertia that are used by Karma. This makes them easy to simulate, but some care | 0 0
must be taken when ascribing parameters such as the inertia tensor, which gives a XX
mathematical description of how easy it is to turn an object about its axes. The | = 0 | 0
inertial tensor of a body, | , is represented by a 3 by 3 matrix, where the off- Yy
diagonal components of the matrix are usually zero, and the diagonal components 0 0 |

I vx,l yy @ndl , give the moments about the principle x, y and z axes. B Z7]
I vx,! yy @andl ,, determine how hard it is

to rotate an object about a principle I

axis. For example, this diagram gives a YY

schematic pictorial representation of the

magnitude of these moments for a box.

The box would rotate most easily about
the x axis. To represent this we can

picture a disk with its axis along the x

axis, the smaller the disk is, the easier it

is to spin. This is because small disks

have a small moment of inertia, much
like a figure skater spinning more easily
(faster) when their arms are drawn in, I

but the more extended the skater is ZZ
(arms out), the higher the moment of
inertia, and the slower they spin.
Rotation about the y (blue) axis is much harder than about x, as represented by the larger associated disk,
while the z axis is somewhere in-between. The sizes of these disks correspond approximately to the inertial
tensor components along the individual axes, with the component | ,, being the smallest, followed by I ,,
and | yy.

Friction and restitution are properties that describes how bodies in contact interact. Karma does not model all
physical phenomena directly and properties such as viscous drag coefficient (related to the geometry of the
body), electric charge, magnetic dipole etc., can be modelled by the developer to introduce more interesting
behavior based on the existing API.

There are no dynamic properties that describe a body’s shape, i.e. its geometry. The only information that a
dynamic body has of its extent is its mass distribution. For simulations that do not involve collisions,
knowledge of geometry is not required. For example, it is not necessary to know anything about an object’s
shape in order to simulate it moving freely under gravity. A body does need to have a specific geometric
shape assigned to it to determine whether it has collided or come into contact with another body. And even
when specific geometry information is not needed, bodies should be assigned inertia tensors that are
appropriate to their geometry and mass. Failing to set inertia tensors properly can cause non-physical
behavior.

Rigid bodies have kinematic attributes that describe their position and movement, such as:
» Position of the center of mass
e Orientation of the body.
» Velocity of the center of mass
» Angular velocity, which describes the rate of change of orientation

There are several possible ways to represent the orientation of bodies, such as Euler angles, rotation
matrices, or quaternions. Karma uses quaternions internally, although API functions are provided to read and
write the orientations of bodies as rotation matrices.

Rigid bodies have dynamic attributes that consist of net applied forces and torques.

These properties can be set to appropriate values using Karma Dynamics, and objects moved by the
application of forces such as gravitational field strength, and impact with another object.
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A brief description of the program flow is:
» Setthe initial (at time t,;; = 0) world, object and joint properties.
» Specify any forces or contacts at t)j;.

+ Set the simulation time-step, Atg, i.e. the time amount by which the simulation should be repeatedly
incremented. A typical value might be Atg = 1/60 of a second, corresponding to a 60Hz frame rate.

« Karma Dynamics then calculates the new positions at (t;; + Ats) and the other dynamical properties for
each body in the world according to the underlying newtonian physical model. This is called solving.
The Karma Dynamics solver is called Kea.

* The positions, orientation and so forth of the models in the scene are updated, based on the data
returned by Karma Dynamics. This renderer updates the scene from this information.

+ The values of the positions etc at t;,; + Atg are used to calculate the positions and orientations at the
next time-step tj,;i; + 2At.

« The sequence continues (tpit, tinit + Ats, tinit + 208, tnit + 3, ......) whereby values at the previous
time-step are used to calculate those at the current time-step.
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Karma Dynamics - Basic Usage

The following section discusses some of the common basic procedures that a program that uses Karma
Dynamics will include.

Creating the Dynamics World

The function:

Mit Wor | dI D MEAPI Mdt Wor | dCr eat e ( const unsigned int naxBodi es,
const unsigned int naxConstraints,
const MeReal | engthScale,
const MeReal nmssScal e )

is used to create and initialize the dynamics world where
+ nmaxBodi es is the maximum number of bodies
* maxConstrai nts isthe maximum number of constraints
in the world.
» | engthScal e is a typical value for the length of an object in your simulation.
 massScal e is a typical value for the mass of an object in your simulation.

An Mit Wor | dI D identifier is returned. This points to an Mit Wor | d structure that identifies the world that has
been created. Most of the functions used to manage world properties are prefixed by Mit or | d.

Setting World Gravity

The gravity (gravitational field strength) for a virtual world may be set using:

void MEAPI MitWrldSetGavity ( const MitWrldl D world,
const MeReal gx,
const MeReal gy,
const MeReal gz )

Where gx, gy and gz are the components of the gravity vector. For a close approximation to earth surface
gravity the appropriate values would be:

Mit Wor | dSet Gravity(world, 0, -(MeReal)(9.81), 0);
The gravity is set along the negative y axis to simulate earth’s gravity value, while the earth surface is
conveniently represented by the x and z axis.

While we perceive gravity as acting in a “down” direction, in a virtual world it may be set along any direction
and with any magnitude.

Defining a Body

The following defines and creates a dynamic body and places it in the world:

Mit Bodyl D body;

body = Mt BodyCreat e(worl d);
The dynamic body would normally correspond to a rendered graphical object such as a sphere, cube, or
more complex shape. A dynamic body is represented internally by a structure storing the following physical
properties:

MdtBody Members Default Value

mass 1

moment of inertia { {0.4,0,0}, {0,0.4,0}, {0,0,0.4} }
position {0,0,0}

quaternion {1,0,0,0}
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{ {1,0,0,0%, {0,1,0,0}, {0,0,1,03}, {0,0,0,1}}
{0,1,0} (fast spin is disabled by default)

force applied {0,0,0}
torque applied {0,0,0}
velocity {0,0,0}
angular velocity {0,0,0}
acceleration {0,0,0}
angular acceleration {0,0,0}
velocity damping 0

angular vel damping 0

The function:
Mdt Bodyl D MEAPI Mt BodyCreate ( const MitWorldiD world )
creates a body structure containing the above default parameters.

The default is that newly created bodies are not included in the simulation i.e. they are disabled. The body
must be enabled in order for it to be included in the simulation. The function:

voi d MEAPI Mt BodyEnabl e Mit Bodyl D body )
enables the body.

( const

Note that bodies are automatically enabled when hit by other enabled bodies.

There are a large number of mutator functions to change the value of members of the MdtBody structure.
Common examples are such functions as:

voi d MEAPI Mt BodySet Posi tion ( const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

Mdt Bodyl D b,
MeReal X,
MeReal v,
MeReal z )
Mdt Bodyl D b,
MeReal dx,
MeReal dy,
MeReal dz )
Mdt Bodyl D b,
MeReal wx,
MeReal wy,
MeReal wz )
Mdt Bodyl D b,
MeReal qw,
MeReal (Qx,
MeReal qy,
MeReal qz )

The corresponding functions that read structure member values are called accessor functions. The
corresponding accessors that read the values of the aboves are:

voi d MEAPI Mt BodySet Li near Vel ocity (

voi d MEAPI Mt BodySet Angul ar Vel ocity (

voi d MEAPI Mt BodySet Quat er ni on (

voi d MEAPI Mt BodyGet Posi tion ( const MitBodylD b
MeVect or 3 p)

voi d MEAPI Mt BodyGet Li near Vel ocity (const MlitBodyl D b,
MeVect or 3 v)

voi d MEAPI Mt BodyGet Angul ar Vel ocity (const Mt Bodyl D b,
MeVect or 3 v)

voi d MEAPI Mt BodyGet Quat er ni on (const MitBodylD b

MeVector4 q)
Not all of the structure members that can be read can be modified.

The mutators and accessors for any Mit Body structure member all use the Mit BodySet and Mit Body Get
prefixes respectively. A complete list of accessors and mutators can be found in the HTML Karma API
Reference.

Evolving the Simulation

The simulation is evolved forward by the increment st ep using the function:
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Mit Wor | dSt ep(wor 1 d, step);
where a typical value for st ep might be 1/60s, which is a reasonable game refresh rate.

The formal definition of Mdt Wor | dStep i s:

voi d MEAPI Mt Wr | dSt ep(const Mt Wrl dl D world, const MeReal stepSize);

Mdt Wor | dSt ep partitions the world and uses the Kea solver to work out the forces required to maintain
constraints. The integrator then evolves the world, calculating the new positions and velocities of each object
in the world.

Cleaning Up

The API function

voi d VEAPI Mit Wor | dDest r oy (const Mt Worl dl D worl d)

frees the dynamics memory at the end of the simulation. It destroys an Mit Wor | d and all bodies and
constraints contained in it.

Evolving a Simulation - Using the Basic Viewer Supplied with Karma

The renderer accompanying Karma is a straightforward, minimal functionality, renderer that wraps DirectX
and OpenGL. It is not meant to be a rendering solution, but rather provide a means of visualizing the virtual
world being evolved using Karma dynamics and collision. It is intended that developers will have their own
rendering solution that they will interface with Karma using the position and orientation information calculated
by dynamics. Further information on the renderer can be found in Appendix B.

The callback function voi d MEAPI Ti ck( RRender* rc) is called from main through the render callback
function call RRun(rc, Tick, 0). The viewer calls the Ti ck() callback function in its main loop that steps
the simulation forward by the set time-step. The viewer RRun() does the following:

whil e no exit-request

Handl e user input
call Tick() to evolve the sinulation and update graphic transforns
Draw graphi cs
}
The Tick function may be used to step through a simulation by inserting the function
Mt Wor | dSt ep(wor | d, st ep) into it to evolve the simulation by one time-step for each call of voi d
Ti ck(RRender* rc).

voi d MEAPI Tick(RRender* rc)

/* Dynanics code to evolve the world */
) Mit Wor | dSt ep(wor 1 d, step);
The choice of time-step should meet the simulation requirements. If the time-step is too large, a simulation
may become unrealistic. For example, a falling ball can pass through a floor of finite thickness if its position is
not determined at small enough intervals i.e. the contact is missed. If the time-step is too small, the
simulation may run at an unacceptably slow speed. After stepping forward in time, some or all of the enabled
bodies may have moved to new positions, and some of the properties may have changed.

The cleanup routine is placed in the callback function specified in at exi t . This must be used because
some graphics APIs on which the renderer is built do not exit from the evolve loop cleanly to execute
subsequent code.
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voi d MEAPI _CDECL cl eanup(voi d)

/* Cl eanup code including the dynam cs cl eanup code. */
mai n()

/* Program code. */

/* Set the callback to cleanup properly. */
atexi t (cl eanup);

The Basic Steps Involved in Creating a Karma Dynamics Program

The following example demonstrates all of the basic concepts discussed to put together a working dynamics
demo. The demo simulates a sphere moving under gravity. Each line contains an explanatory comment.

/***************************\

* Karma Dynami cs Basic Steps *

\***************************/

/* WIIl need the dynamics and the viewer library for this exanple */
#i ncl ude "Mt . h"
#i ncl ude "MeVi ewer. h"

/* The following 3 functions are used. */

/* The standard Karnma calling convention, MEAPI, is _ stdcall */
int MEAPI _CDECL main(int, const char**);

voi d MEAPI _CDECL cl eanup(void);

voi d MEAPI tick(RRender*, void*);

/* Karma dynami cs variable world_is a pointer to an MitWorld struct */
Mit Wor | dI D wor | d_;

/* sphereD_is a pointer to an MitBody struct */

Mit Bodyl D sphereD_;

/* Karma renderer structures */

RRender * rc;

RG aphi c* sphereG ;

/* The follow ng struct contains conmand |ine paraneters passed to the program */
MeConmandLi neOpti ons *opts;

voi d MEAPI _CDECL cl eanup(voi d)

{
/* Deal | ocate nmenory assigned to the body */
Mt BodyDest r oy(sphereD ) ;
/* Destroying the world deal |l ocates nenory assigned to all bodies and
constraints contained in it. The body destroy above is not critical */
Mdt Wor | dDest roy(worl d_);
/* Clean the graphics nenory */
RRender Cont ext Destroy(rc);
}

void MEAPI tick(RRender *rc, void *userdata)

static int count = O;

/* exit the sinmulation after 600 tine-steps */
i f(++count==600) exit(0);

/* Evol ve the dynamics world by 0.01 seconds */
Mdt Wor | dSt ep(wor |l d_, 0.01f);

}

int MEAPI _CDECL main(int argc, const char *argv[])
{
/* Define the color red for the body. */
/* The paraneters passed to red correspond to
Red Green Blue and Al pha (how opaque the object is) */
MeReal red[] = {1, 0, 0, O0};
opts = MeCommandLi neOpti onsCreate(argc, argv);
rc = RRender Context Create(opts, 0, 1);

/* Create a dynanmics world with unit sizes. */
/* The correspondi ng structure allocates

enough menory for one body and no constraints */
world_ = MitWrldCreate(1, 0, 1, 1);
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/* Set the world property gravity to act with
equal strength along the -x and -y directions */
Mit Wor | dSet Gravity(world_, (MeReal)-0.3, (MeReal)-0.3, 0);

/* Make a body and add it to the dynamics world world_. */
/* While this dynam cs body has been called sphereD_,

it does not yet have any know edge about it's shape */
sphereD_ = Mt BodyCreate(world_);
/* Turn the body sphereD_on so that it is included

when the world world_ is evolved. */
Mit BodyEnabl e( sphereD ) ;

/* Render a sphere. Assign it the color red, give it a radius
of 1.2 and update the graphical spheres position and
orientation with that contained in the sphereD_ struct */

sphereG_ = RG aphi cSphereCreate

(rc, (MeReal ) 1.2, red, MtBodyGet TransfornPtr(sphereD));

/* Register the function to clean up the nmenory when the programexits */
atexi t (cl eanup);

/* Begin the update | oop by calling the renderer, that
inturn repeatedly calls the callback tick. */

RRun(rc, tick, 0);

return O;
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Constraints: Joints and Contacts

A constraint is a restriction on the allowed motion of a physical object. This restriction gives rise to a force
acting on the constrained body that affects its motion. Constraints are used to model large scale effects
without worrying about the underlying physics of the situation. For instance, the forces that prevent a coffee
cup from falling through a table arise from electrostatic forces between the respective molecules making up
the solid materials comprising the cup and table. However, the net effect of all those complicated forces is
simply that the cup doesn't penetrate the table. This can be expressed as a kinematic restriction on the
motion and the force resulting from that familiar constraint - called the normal force - calculated.

There are many restrictions that can be imposed on rigid bodies using mechanical coupling, all of which are
based on a constraint of some description. The more familiar ones are the revolute or hinge joint, the
prismatic or sliding joint, the universal joint, and the ball and socket or spherical joint. Note however, that
these joints are an idealization of the real couplings that one can construct with physical components and
that are, for example, commonly found attaching doors to door frames, and to transmit drive forces from an
engine to a car wheel. No real joint behaves exactly like an ideal joint since real physical bodies are never
perfectly rigid, and there is always some small clearance in any given assembly.

There are numerous types of constraints that can be imposed on position, angular freedom, velocity, angular
velocity or certain combinations of these, in addition to restrictions on the forces required to impose a
constraint (if pulled hard enough the elastic limit of a spring can be exceeded) etc. The motion of a single
rigid body or the relative motion of two or more rigid bodies can be restricted. Joints are described by what
are known as equality constraints and contacts by inequality constraints. While these can become quite
complicated, it is the purpose of the Karma dynamics library to deal with all the details.

Constraints are a very powerful modeling tool. Karma dynamics provides an API through the dynamics
library for a selection of useful constraint types.

Degrees of Freedom

A free body has six degrees of freedom, that allow it to:
* move freely in any direction in 3D space relative to another object
< freely rotate about any axis in 3D space relative to another object.

Hence, by joining two objects together up to six degrees of freedom from the
attached pair of objects can be removed. To have an effect at least one degree of
freedom must be removed. The number of degrees of freedom removed by a joint
is a measure of the computational cost of using that joint in a simulation, the more
degrees of freedom a joint removes, the more costly it is to implement.

Joint Constraints and Articulated Bodies

Articulated bodies are rigid bodies connected by joint constraints. A body representing a forearm can be
connected to a body representing an upper arm by an ‘elbow’ hinge joint. But joints don’t just connect bodies.
They also constrain the motion of rigid bodies: the forearm cannot be pulled far without moving the upper
arm. A hinge joint can have limited rotational movement - a real human elbow cannot move more than about
160 degrees without breaking.

The Mdt library includes models of hinges, ball and socket, universal, and other joints. Hinge and prismatic
joints have limits so that simple models of real-world behavior can be created: a hinge can be limited, for
example, so that it only opens 270 degrees.

Some joints have soft limits, that give ‘bouncy’ effects.

Other joints are motorized, allowing control of the movement of the bodies. Motorized joints with power limits
provide stable modeling of, for example, engines, brakes, motors, and stiff springs.
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Joint Types
Articulated bodies are made up of two or more rigid bodies connected together by joints. Joints, like contacts,
are constraints upon the behavior of bodies. This following joint types are supported by the dynamics library.
» Ball and Socket or spherical.
« Hinge or revolute.
e Prismatic or slider.

* Universal.

* Angular3.

o Car Wheel.

e Linearl.

e Linear2.

» Fixed Path.

* Relative Position Relative Orientation (RPRO).
e Skeletal

* Spring6

* Spring.

¢ Cone Limit constraint.

These joints can be used to attach two simulated objects to each other - that is, their relative position or
orientation (or both) is constrained. Although the discussion below refers always to attached bodies, these
joints may be used to attach a single object to the inertial reference frame (world) by setting it to NULL.
Complex dynamic structures can be created by linking bodies together using these joints. When such
structures are cross-linked (multiply connected), the model must be physically realistic, because the Mdt
Library cannot deal with unphysical structures that cannot be constructed in the real world.

Hinge and Prismatic joints can have their motion restricted or the movement powered by using limits (stops)
and actuation (motors).

Constraint Functionality

Contacts and joints each have a dedicated set of functions to manage their properties. An abstract, generic
set of function provide a common set of basic functionality for all joint structures. Functionality specific to
each joint exists in addition to this basic functionality.

The identifiers below are used in the functions that apply to each joint type.

Identifier Constraint

BSJoi nt Ball and Socket

H nge Hinge
Prismatic Prismatic

Uni ver sal Universal

Angul ar 3 Angular3

Car Weel Car Wheel

Li nearl Linearl

Li near 2 Linear2

Fi xedPat h Fixed Path
RPRQJ0i nt Relative Position Relative Orientation
Skel et al Skeletal joint limit
Spri ng6 Spring
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Spring Spring
ConeLim t Cone Limit constraint
Cont act Contact

As an example consider the function that is used to create the above constraints. An Mit *| D variable must
first be declared. This will point to the Mit * structure where the information about that joint will be stored.
The create function is common between all the constraints. It's specification is:

Mit *I D MEAPI Mt *Create (const Mt Wrl dl D worl d)

where * represents one of the above identifiers. Mit *Cr eat e() creates a new joint or contact and adds it
to the world. A joint must be created if an articulated body is needed.

A full specification of constraint functionality is provided in the Reference Manual.
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Constraint Usage

Joints

A joint attaches two objects, by restricting one or more of the degrees of freedom between them. Because it
is a common and easily visualized joint, consider a hinge. This joint restricts five degrees of freedom - three
translational and two rotational between the two hinged objects, i.e. the objects cannot change their position
in space relative to one another, and are only free to remove by rotation about one axis. The obvious
example is a door hinged to the door jamb. The following section of code demonstrates how a door hinged
to the world might be created with Karma. Please refer to the reference manual for a definitive explanation of
the functions.

/* Create a door body and define sone of its properties */
const MeReal doorSize[] = {(MeReal )0.8, (MeReal)2.0, (MeReal)O0.04};
door Body_ = Mit BodyCreate(world_);

Mt Body Set Posi ti on(door Body, 0, 0, -7);

Mt Body Set Mass( door Body, (MeReal )2.0);

/* Gve the body a kick around the rotation axes */

Mt Body Set Angul ar Vel oci t y(door Body, 0.0, (MeReal)5.0, 0.0);
/* Danping determ nes how quickly a body will slow down */
Mt Body Set Angul ar Vel oci t yDanpi ng( door Body, (MeReal)O0. 2);

/* \Wen evolving the world, include the body */

Mit BodyEnabl e( door Body) ;

/* Create a hinge and attach the door to the world */
hi nge = Mit H ngeCreate(world_);
/* doorBody is body zero. The world is body one. The world is
identified with either a 0 or NULL */
Mit H ngeSet Bodi es( hi nge, doorBody, 0);
/* Position the hinge in the center of a vertical side */
Mt BodyGet Posi ti on(door Body, doorPosition);
Mit H ngeSet Posi ti on( hi nge,
*(door Posi tion)-doorSi ze[ 0]/ (MeReal ) 2. 0,
*(door Posi tion+1),
*(door Posi tion+2));
/* Al'low the door to rotate about a vertical hinge axis */
Mit H ngeSet Axi s(hinge, 0, 1, 0);
/* Enable the hinge so that it is included when the world is evolved */
Mit H ngeEnabl e( hi nge) ;
Most of the functions included above for setting object and hinge properties are reasonably self explanatory.
While the code section could be further reduced to get across the salient points, some of the property
functions are included to give users a feel for using Karma, and to allow the following minor points to be

made:

» The angular velocity value above is the rotation speed around the y axis. Generally, the axis of rotation
is given by the normalized rotation vector with the direction being specified in the world (Newtonian)
reference frame.

» The damping parameter should be used to slow down a body’s angular rotation rate. Similarly
MdtBodySetAngularVelocityDamping should be used to reduce a body'’s linear velocity rather than setting
friction.

» When a joint is created, it should be followed with the MdtJoint_or_ContactSetBodies function that
assigns the bodies to the constraint. This must be done before the joint position is set so that the
relative positions of the bodies with respect to the joint can be computed.

» The hinge axis should be normalized and given in the Newtonian reference frame.

» Because the hinge restricts five of the six degrees of freedom between two bodies, it is a a costly joint to
simulate. Each restricted degree of freedom adds one additional row to the matrix that the constraint
solver solves for a sensible set of forces to satisfy all the world constraints.

Limits
The hinge and prismatic (slider along one axis) joints can have limits imposed on them to restrict their range

of movement. In the case of the hinge this restricts its angular motion. The restriction that can be imposed
is not limited to one revolution i.e. hinge joint limits range from -nTt through nTtfor real number n hence
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multiple rotations are supported and a hinge passing a limit will always be detected and the correct response
simulated. In the case of the prismatic joint, motion along one axis is limited. A familiar example of this
would be a piston. Each joint limit can be accessed individually and its specific properties changed.

The limit properties accessible to the programmer include limit stiffness, which can be either hard (high limit
stiffness) or soft. Hitting a hinge limit that is hard results in a hard bounce that reverses the bodies’ angular
velocities in a single time-step. A soft bounce may take many time-steps to reverse the angular velocity.

When soft limits are used, damping can be set, so that beyond the limits the joint behaves like a damped
spring. If the limits are hard, the limit restitution can be set to a value between zero and one to govern the
loss of angular momentum as the bodies rebound.

Powering Joints

A prismatic or hinge joint can be powered or actuated. This could be used to simulate a motor driving the
constraint in it's remaining degree of freedom - angular for a hinge, and linear for a prismatic. The powered
joint is force-limited and provides a useful, stable way of getting joints to move. Using them is better than
applying forces or torques to the joint bodies directly, because the joint velocity is controlled directly instead
of the joint acceleration.

For a hinge motor, a desired angular speed and the motor’s maximum torque need to be set. The motor is
assumed to be symmetric, so that the maximum torque can be applied in either direction. A torque no greater
than this is applied to the hinged bodies to change their relative angular speed, until either the

* hinge angle hits a pre-set limit.
» desired angular speed is achieved. If the force limit is low or the desired velocity is large, the joint will

take several time-steps to reach the desired velocity, or possibly not reach the desired velocity - see the
following bullet. This action is somewhat similar to an engine with a maximum amount of output torque.

« maximum torque specified reaches a maximum angular speed that is less than the desired angular
speed. This may occur, for example, if there is damping that the motor is not powerful enough to
overcome.

The response of an actuated joint hitting a limit depends on the stiffness and restitution or damping
properties that have been chosen for the relevant limit, but in general the joint will (quickly or slowly) come to
rest at the set limit. If a soft limit has been specified, the rest position will be beyond the limit by an angle
determined by the motor’'s maximum torque and the limit stiffness factor.

Whenever a hinge or prismatic is actuated, or is at (or beyond) one of its limits, the computational cost is
equivalent to constraining six degrees of freedom - actuation adds one constraint row to the constraint
matrix, increasing the computational cost.
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The following section of code shows how a hinge limit is set up and a hinge joint powered:

/* Declare hingeLimt as a pointer to sone limt struct */
MitLi mit1D hingeLimt;

/* Access the limt struct of the hinge constraint */

hi ngeLi mit = Mt H ngeGet Li m t (hi nge);

/* Limit the hinge notion to 0.5 radians */

Mt Si ngl eLi mi t Set St op( Mt Li mi t Get Lower Li mit (hi ngeLinmt), (MeReal)-0.5);

Mt Si ngl eLi nmi t Set St op( Mt Li mi t Get UpperLimit(hingeLinmt), (MeReal)O0.5);

/* Make the limt hard, by setting the maximumlinit stiffness to the naxi num
possible for the given platform*/

Mt Si ngl eLi mi t Set Sti ff ness( Mt Li mit Get Lower Li ni t (hi

Mt Si ngl eLi mit Set Stiffness(MitLintGetUpperLinit(hi

/* \Wen the hinged objects reach the [imt they wil
restitution is zero */

hingeLimt->imt[0].restitution

hingeLimt->limt[1l].restitution

ngeLimit), MEINFINTY);
ngeLimit), MEI NFINTY);
| not bounce i.e. the limt

0;
0;

/* Turn the limts on. The default status of the hinge is ’inactive */

Mt Li mit ActivateLimts(hingeLinmt, !'MitLimtlsActive(hingeLimt));

/* Activate the notor to drive the hinged objects. Apply a maxinumforce of 5N

to try to attain a maxi numvelocity of 5m's. Assunming SI units */

Mdt Li mi t Set Li m t edForceMot or (hi ngeLinmit, 10, 5);

/* Include the hinge in the evolution of the world */

Mit H ngeEnabl e( hi nge) ;
The hinge struct contains the member bpower ed, which is an MeBool indicating whether the joint is
powered (0) or not (1). The default for a joint is not powered. Mt Li ni t Set Li ni t edFor ceMbt or ()

automatically turns the powering on.

Hint: To model dry friction in a joint set a target velocity of zero (desi r ed_vel = 0), where the braking force
is controlled by f max. This provides a simple model of a disk brake - heat and other nonlinear effects are not
included.

Limiting Motion in Two Dimensions

The limits discussed above can be used to restrict the motion in a single linear or angular degree of freedom.
To restrict motion in two angular dimensions the cone limit constraint should be used in conjunction with the
chosen joint - a ball and socket or universal are two examples in which the angular freedom can be
constrained. For a ball and socket the cone limit does not place a limit on the ‘twist’ freedom, while the twist
is already constrained in a universal joint. The cone limit restricts the angle between a pair of axes, one axis
being fixed in each body. Cone limit behavior is ill defined for small cone angles, hence half angles less than
about 5° should not be used.
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The following code section demonstrates how you would set up a cone limited universal joint between an
object and the world:

/* Create a world and add a body to it. Set world gravity = (0, -9.81, 0) and
position the body at (2, 0, 0). The body then falls under gravity within the
constraint of the universal joint defined below, until it hits the linmt inposed
by the cone, whereupon it cones to rest touching the 'inmaginary’ cone side. */

/* Create a universal joint between _world and _body. */

_uni vJoint = Mt Uni versal Geate(_world);

Mdt Uni ver sal Set Bodi es(_uni vJoi nt, _body, 0);

/* Position the joint origin in the Newtonian reference frane 4m away fromthe
body. */

Mdt Uni ver sal Set Posi ti on(_univJoint, -2, 0, 0);

/* Define the universal joint axes. The

Mdt Uni ver sal Set Axi s(_uni vJoint, 0, 0, 0, 1);

Mdt Uni ver sal Set Axi s(_univJoint, 1, 0, 1, 0);

Mdt Uni ver sal Enabl e( _uni vJoint);

_coneLinmt = Mt ConelLinitCeate(_world);

Mdt ConeLi mi t Set Bodi es(_coneLinit, _body, 0);

Mt ConeLi mi t Set ConeHal f Angl e(_coneLimit, ME_PI/3.);
Mdt ConelLi mi t Enabl e(_conelLimit);

Attaching Bodies Together with a Spring

To simulate the motion of bodies attached by a spring, Karma provides what is most accurately described as
a configurable distance constraint. The identifier we use for this constraint is ‘spring’, because it is most
often used to implement spring functionality. It should be noted that this configurable distance constraint can
also be used to simulate the following:

« String can be simulated that can decrease in length but not increase.
< Elastic, that can decrease in length and can stretch can be simulated.
* A solid rod that cannot change its length can be simulated.

Using the Configurable Distance Constraint to Simulate a Spring

Mathematically, Hooke’s Law may be used to describe the force between objects connected by springs, and
calculate the resulting motion. When using Karma to simulate a spring note that:

e The term natural length is not the separation between the two objects constrained by this constraint, but
is an additional distance that is added to the separation between the two objects.

« Unlike a real spring, there is no angular constraint between the attached bodies. Only one linear
dimension is constrained, restricting one degree of freedom. This adds one row to the constraint matrix.

< For high values of stiffness (over 1000) the parameter epsilon (please refer to the discussion of epsilon
later in this chapter) may need decreasing to improve the stability. This is a similar to using a large
range of masses.

« Offsetting the attachment position of a spring joined to two objects generates angular motion when the
spring is released. Setting angular velocity damping will reduce this motion. Similarly, if the objects
start to move around apply linear velocity damping.

« Set an appropriate inertia tensor for the objects - they will spin rapidly if this is too small.

« Increasing the masses of the attached objects for a given spring constant, does not change the
resulting motion as would be expected for a normal spring. One would expect the joined objects to
move more quickly to the equilibrium position for a smaller mass. Rather the response time is constant
for different masses. This is because the constraint solver is used to calculate forces to satisfy the
given constraint, hence increasing the masses joined by a spring results in an increased force being
generated to move them to the specified position and satisfy the constraint, hence the response time is
the same.

< The motion is symmetric even when different masses are joined by a spring, which is not physically
accurate. Again this is because the forces are generated to reposition each mass individually. i.e. a
larger mass has a larger force applied.
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» The separation between the two attached bodies is governed by two limits that may both be hard (which
simulates a rod or strut joint) or both soft (simulating a spring) or hard on one limit but soft on the other
(e.g. an elastic attachment that may be stretched but not compressed). The default behavior is spring-
like, with two soft, damped limits, both initialized at the initial separation of the bodies.

The following code section demonstrates how you would set up a configurable distance constraint to
simulate spring motion between two bodies:

/* Define an inertia tensor for the boxes of the right order of magnitude */
MeReal nass = (MeReal ) 100. O;
MeMat ri x3 boxl nertia =
{
mass, 0, O,
0, mass, O,
0, O, mass

/* Need the box positions when setting up this constraint */
MeVect or 3 boxPosi ti on;

* Code (not included) here to:

Specify a world with two bodi es and one constraint.

Add two bodies to the world.

Assign appropriate mass, mass distribution, and danping values to the boxes.
Position the boxes and include themin the world sinulation. */

PoONET

/* Create a spring and use it to constrain the two boxes */
spring = Mt SpringCreate(world_);
Mdt Spri ngSet Bodi es(spring, boxOne, boxTwo);

/* Set the attachnment positions of the spring to the respective dynam c body
positions of the boxes, with an offset in the y positions */

Mit BodyGet Posi ti on(boxOne, boxPosition);

Mt Spri ngSet Posi tion(spring, 0, boxPosition[0], boxPosition[1l]-1, boxPosition[2]);
Mt BodyGet Posi ti on(boxTwo, boxPosition);

Mt Spri ngSet Posi tion(spring, 1, boxPosition[0], boxPosition[1]+1, boxPosition[2]);

/* Set the property natural length L. The equilibriumseparation of the boxes wll
then be equal to the box position separation plus L */

Mt Spri ngSet Nat ur al Lengt h(spring, 4);

/* The stiffness of the Hooke's Law constant K determnines how fast the spring
reacts. The higher K, the larger the force generated */

Mt Spri ngSet Sti ffness(spring, 10);

/* Turn the danping off. The constraint will now be springy. Mike sure that |inear
danping of the bodies is zero to see this effect */

Mt Spri ngSet Danpi ng(spring, 0);

/* Include the spring in the world simulation */

Mt Spri ngEnabl e(spri ng);

The Car Wheel Constraint

Vehicle simulation forms a large part of the target simulation environment for physics simulators aimed at
games and entertainment. A specific constraint aimed at simulating car wheels, providing features for
steering, driving and suspension, is packaged as part of the Karma constraint library. This car wheel joint
makes it easier to simulate cars using Karma.

Description

The car wheel constraint connects a wheel body to a chassis body removing three or four degrees of
freedom depending on whether the wheel is steerable or not (a fixed, nonsteerable wheel is just a car wheel
with steering locked). The remaining degrees of freedom are;

» rotation of the wheel about its rolling, or hinge axis
» travel along the suspension direction and
» steering of the wheel (optional)

Additional constraint rows can be added to drive the wheel, to drive the steering or, in the case of
suspension, to implement spring/damper behavior with suspension travel limits, so a full six constraint rows
may be generated.

40 » Dynamics



MathEngine Karma User Guide

Note that the steering axis also defines the suspension direction, as in a telescopic fork, and it is assumed to
pass through the center of mass of the wheel. There is no option at present to offset the wheel, to model
‘trail’ on a wheel for example, or to have separate steering and suspension axes.

The following sketch shows the degrees of freedom and axes of the car wheel constraint.

Steering (can be locked)
Chassis body

Suspension travel
I SteeringAxis

Rolling
Wheel body

~— /://ly\g 64)(,‘8

Usage

Defining the suspension is the trickiest part of using car wheel constraints. The suspension stops are
relatively straightforward to set up. All heights are specified as vertical offsets (up the z-axis) measured from
the chassis body origin to wheel center positions. Note that all these 'heights' will usually be negative as the
full travel of the wheel suspension will usually be entirely below the chassis origin level;

Chassis * Z-up wheel heights:
— frame origin -®— - -
level J_ . i
hilimit — top stop height wheel rest height
static load height —|- —_- — - — -;— (should be inside

travel center line suspension travel)

— lolimit — bottom stop height load x spring const, K
| reference —— zero load height

Springing and damping are best set up once the chassis mass and geometry are known because the resting
height of each suspension depends on the static load it carries. With zero load acting on a suspension the
spring will attempt to relax to its natural height; this is the reference height used in setting up the suspension
(in fact this height will not be achieved if the bottom stop is hit first).

The displacement of the resting, or static-load height from the reference height of the suspension can be
estimated by multiplying the load by the spring constant.

The suspension limits are hard by default, meaning that if a wheel is forced onto one of its limits there is little
discernible motion past the limit. An adjustable ‘softness’ can also be defined on the limits. Increasing the
limit softness will cause visible springiness such that displacement past the limit is roughly proportional to the
applied force.

The traction behavior of the car wheel depends on setting up the wheel/ground contact properly; see the
section on contact constraints below.

Fast spinning wheels

The car wheel itself is hinged to the suspension. When the wheel is rotating with a high angular velocity it
can be difficult to accurately simulate in real time. This is a general problem, the reason being that the
integration process uses only the first few terms of a series when integrating to find new positions and
velocities. For situations, such as an object falling in gravitational field, the integrator will give an exact result
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because position is represented exactly by a second order equation. However, for rotational motion where
the series is infinite, errors become more apparent when higher angular velocities are used, which may be
observed for a car traveling at high speed by the wheel wobbling. To stop this:

» Always set the hinge axes of the car wheel joints to be a fast spin axis (please refer to Chap 6 point 13).
This will give a more accurate calculation of the wheel velocity when moving at high velocity. This
ensures that the body orientation is updated correctly after each time increment, because discrepancies
may otherwise become quite large because of the integration process.

» Use sensible mass and inertia tensors for your wheels. A large mass and inappropriate inertia tensor
can make the wheels difficult to turn.

* We recommend limiting the maximum angular velocity of the wheels. If you continue to apply torque
when your car leaves the ground, possibly after hitting a ramp or bump in the terrain, the angular
velocity of the wheels will increase quickly because there is no resistance to the motion. The angular
velocity values reached will probably be unrealistic, hence it is sensible to limit them. In addition,
angular velocity damping will reduce the angular acceleration of the wheels in this case.

» If your car has small wheel radii, then the angular velocities will be higher. Can you increase the wheel
radius?

» Check that you are using a sensible value for epsilon. Epsilon affects the solve process and may need
adjusting to suit the masses used in your application (please refer to the discussion of epsilon later in
this chapter).

Contact Constraints and Collision Detection

In a 3D simulation, models are likely to come into contact with each other. The points where two bodies
intersect are called contacts. A contact limits how bodies can move, and is therefore a type of constraint. The
Mdt library includes high-level representations of contact constraints.

To specify whether two bodies are in contact, create and populate a contact data structure by setting the
position of the point of contact as well as the unit normal vector in the direction perpendicular to the local
contact plane. If you are using Karma Collision and the Karma Bridge this will be done automatically when
objects collide.

Karma Dynamics uses this contact information to model the behavior of the two bodies. For example, if a
body representing a stone falls onto the floor, Karma Dynamics will detect the collision and apply the
appropriate impulse so that the stone stops when it strikes the floor. The amount of rebound of the stone can
be adjusted by varying the restitution between the stone and the floor.

Every time two bodies touch i.e. intersect, a contact must be created. The contact constraint generated will
ensure that there is no relative motion in the direction opposite to the contact normal. The solver computes
the constraint force required to prevent the bodies from moving against the direction of the normal as well as
the tangential friction forces. The type of friction used, the computed forces exerted at the contact point on
the contacting bodies, and the position and normal of the contact, form part of the information stored in a
Mdt Bel Cont act Par anms structure.

Most contacts will not be actual contact points. This is because the dynamics rigid body solver may leave
bodies in slightly overlapping positions. Therefore, Karma uses the idea of an “effective contact point”. For
example the geometrically-visible points of contact between two shallowly-intersecting spheres forms a
circle, but the best “effective contact point” to communicate to the solver would correspond to a point at the
center of this circle.

These contact point directions may or may not correspond exactly to points of contact between the two
bodies in terms of the visually-rendered appearance, but are a way of summarizing the “inter-surface
relationship” in a way that is both efficient for the rigid body solver, and that produces the expected non-
interpenetration behavior.

Interpenetration and Contact Strategies

Interpenetration of two surfaces must be prevented by carefully choosing an appropriate set of contact
points. The choice depends on the type of contact behavior. For a bouncing ball, one contact should suffice,
while resting and sliding of a box would usually require at least three contacts.
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Karma Collision offers a number of alternative contact strategies that produce contacts for different types of
situation that can be selected as necessary. Strategies that use fewer contact points have the advantage that
MdtKea solves them more quickly. For those using a third-party collision package or their own in-house
custom collision routines, a contact strategy must be devised that models behavior realistically without
creating too many contact points.
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Further features

An important feature of a physics engine is its ability to sensibly determine how to save CPU load by not
simulating objects that are stationary. If you drop a box onto a terrain, you want your software to be able to
recognize when it becomes motionless and to automatically remove it from the evolve. For a single box on a
plane this is fairly straightforward, but as your simulation becomes more complicated it can become more
difficult for the software to recognize that a particular configuration should be static.

The following sections present and discuss parameters in Karma that you should know how to adjust when
creating more advanced simulations. An example code section is then provided that builds a stack of boxes
and switches them off quickly by recognizing that the structure is stable.

Automatic Enabling and Disabling of Bodies

There is no need to calculate the behavior of a stationary body, unless it is struck by another body. The Mdt
Library will automatically disable stationary bodies, removing them from the list of bodies passed to the
solver. This reduces the computational time that the solver needs to update the dynamic properties of the
bodies in the world.

To prevent a particular body from moving it is not enough to disable it. Any rigid body registered in a world
will come to life when an enabled body becomes constrained to it, for example via a contact constraint
generated by a collision. Objects that have a very small velocities and accelerations will be disabled
automatically, since this typically means that the forces acting on that rigid body have come near to
equilibrium.

Bodies that never move at all, such as buildings, shouldn’t have any dynamics properties associated with
them. They should simply be implemented as collision models, which generate appropriate contacts when
dynamic objects collide with them.

Karma can check for moving objects at each time-step. If an object is found to be motionless, i.e. not
interacting with other objects and with no applied motion inducing forces acting on it, it will be turned off
(disabled), thus saving CPU cycles. This auto-disable feature can be turned on and off with the function
MdtWorldSetAutoDisable, 0 being off and 1 being on.

When using the autodisable feature, the parameters linear and angular values of both the velocity and
acceleration can be adjusted to determine when objects should be turned off. All four values need to be
satisfied for this. The higher these values - that are stored in an MdtAutoDisableParams structure - the
sooner an object will be disabled. When disabled, a body is not ‘processed’ by the solver until re-enabled by
a force or collision event.

To wake up an object, Karma checks whether the force and torque values exerted on that object are larger
than the force and torque threshold values required to wake up resting bodies. When Karma decides that an
object should be woken up, and enables it, it may be that it will take a short time for its motion to exceed one
of the four threshold values (linear and angular, velocity and acceleration) that will keep it awake. To prevent
it being turned off too soon the ‘alive window’ property should be used that sets the number of evolve steps
before an object can be disabled again, after it has been awakened. The function
MdtWorldSetAutoDisableAliveWindow gives objects enough time to gain a minimum velocity after being
awakened.

The Meaning of Friction, Damping, Drag, etc.

There are lots of words used to describe frictional effects, often with similar meanings. Friction is an overall

term used to describe the macroscopic effect of the resistance to motion that a body experiences, the origin
of which lies in the effect of physical processes on the atomic scale. Here, friction mostly refers to the forces
produced at a contact between solid objects. The usual term for friction caused by motion through the air or
some other fluid is drag, or viscous friction.
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Friction acts either to prevent the motion of a body at rest or to reduce the velocity of a body in motion.
Sticking is a characteristic of dry friction at an unlubricated contact between bodies, also called static friction.
A contact in static friction will reflect applied forces up to a certain limit above which motion will start. This
causes a transition from static to dynamic friction.

« Drag refers to the frictional process occurring at the solid-fluid or fluid-fluid interface. Examples include
an aeroplane in flight, a cannon ball falling through water, a football moving through air, and a falling
raindrop.

« Damping is a property of an oscillation / vibration and usually refers to the attenuation of resonant or
harmonic motion. Examples include the damping of a car spring that reduces the oscillatory motion
providing a smoother ride.

In Karma the term 'friction’ is used to describe the property at the interface between solid objects, while
‘damping' describes both drag and damping.

Contact properties are associated with pairs of materials. Friction is a property of the interface interaction
between pairs of materials, such as aluminium with aluminium or aluminium with steel. The friction is
different and currently no formulation exists that adequately predicts contact properties i.e. values are
determined by direct measurement rather than by theoretical models. There is no functional representation
that will take you from steel-steel through aluminium-steel to aluminium-aluminium contacts. Generally, a
series of tables or graphs are used from which the appropriate values are obtained. Note that values of
friction for given materials in contact are not unique. For example friction depends on temperature.

In Karma, friction parameters are chosen by the user to give the desired behavior.
The following situations demonstrate the effects of friction and damping:

¢ Consider a ball at rest on a surface in a vacuum. Gravity acts to constrain the ball to this surface. The
friction between the ball and the surface is zero. Give the ball a quick push - don't maintain the push.
Because this is a vacuum there is no air and hence no resistance to the balls motion through drag.
Hence, for this highly idealized situation, the ball will continue to move along the direction in which it
was pushed for ever. Because there is no friction, the ball will slide as opposed to roll.

« Now add some friction to the ball-surface interface. Maintain the vacuum. If the friction is high enough
the ball will stick at the contact point resulting in an 'out of balance' force which causes the ball to rotate.
The ball is in static friction i.e. the relative velocity between the ball and the surface at the contact point
is zero. The ball will roll. For this idealized situation, and because the ball is in static friction, it will roll
for ever. The velocity at the opposite side of the ball from the contact point is moving at twice the
velocity of the ball centre.

« Now consider the same situation, but through air rather than in a vacuum. Drag occurs. The motion of
the ball, be it sliding or rolling, will eventually cease.

* Now swap the ball for a box, moving in a vacuum. Friction applies. Give it a push and keep pushing.
You have to push it hard enough to start it moving. Start off with a low push and push harder - increase
the force. When a certain force has been reached the box will start to move. The box was in static
friction. When the static friction was overcome, the box started sliding (note not rolling). When it is
moving, it experiences dynamic friction. Dynamic friction acts to slow the box down, so you have to
maintain the push to keep it moving. You may often find that it is easier to keep the object moving when
it has started moving.

In summary, with:
e zero friction and no damping your object will SLIDE forever.
« friction at the contact and no damping your object will ROLL forever.
« linear and angular, velocity damping, a resistance to motion will occur and the object will stop.

For simplicity dynamic friction is considered to be constant. However, this is not a true model of the real
world. The values used closely approximate ideal systems over a small working range - such as small
velocities. In the real world, there are a number of things to be considered. For example, a football moving
across the football pitch experiences ground contact at a contact area and frictional drag through the air
(fluid) medium. There is a functional variation of the friction. On a still day the football at rest is in static
frictional contact with the ground and air. When it is moved along the ground the drag varies with the velocity
- wind resistance increases and the friction at the contact can change. While not so relevant in most cases
frictional heating occurs between bodies moving in contact - consider the heat generated when using
sandpaper.
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Simulating Friction

Friction can conveniently be categorized as viscous friction and dry friction. Viscous friction occurs when the
contact is wet i.e., when there is a lubricant at the contact like oil. Dry friction occurs when the surfaces are
dry i.e., when two solid surfaces are in direct contact without any lubricant.

Viscous friction produces a force opposite to the motion of the objects in contact with a magnitude related to
the relative sliding velocity. Viscous friction does not keep objects from sliding but it can slow them down.
Note also that viscous friction depends on the relative velocity of the objects and produces more force at high
relative velocity.

Dry friction produces a very different sort of behavior that has two aspects, namely kinetic (dynamic) friction,
and static friction. A sliding object subject to dry friction experiences kinetic friction during its sliding phase
and static friction once it has come to rest. Importantly, static friction prevents sliding from rest altogether
while the applied tangential force acing on the object is below a threshold value. During sliding the kinetic dry
friction opposes the motion with a force which (unlike viscous friction) does not depend on the relative
velocity of the objects. The static threshold force is usually a little higher than the kinetic friction force.

Measurements of dry friction show that the magnitude of the kinetic friction force increases with the contact
load, as does the static threshold friction force. The usual analytical model of dry friction, referred to as
Coulomb friction, approximates this dependence on normal force as a linear relationship.

Coulomb Friction

The most accurate model for modelling macroscopic friction properties between two solid objects is the
Coulomb model. However, it should be appreciated that this is a model that simply describes the large scale
observed phenomena. It assumes nothing about the underlying materials or nature of the surface.
Microscopically, surfaces are typical very rough - even glass is smooth only to the wavelength of light. On an
atomic scale 'mountains and valleys' exist on a usual glass surface, complicating any microscopic
explanation of the large scale force we observe as friction. The Coulomb coefficient of friction, [, is
expressed as a function of the normal force, the normal force being the reaction force at the interface that is
caused by the objects weight. Hence true Coulomb friction is known as 'cone friction', where the magnitude
of the frictional force is isotropic and depends on the normal force. For example, given a four wheeled car.
If the car is of mass 1000kg (weight approx 10 000N), it might seem appropriate at the simple level to
assume that one quarter of its mass acts through each wheel. Hence the normal force at each wheel is
equal to the car weight divided by 4, i.e. 2500N, or 250kg mass equivalent force. If [l = 0.5, then the friction
force at each wheel is 1250N.

Modeling friction this way is computationally expensive, hence the Coulomb model would be used for
research, engineering and visual simulation, where accuracy is important and better computing resources
available. For real time simulations on low end PCs and games consoles of the type used in the
entertainment and games markets, the accuracy required is such that this model can be simplified to speed
things up.

Mathematically, imagine that the bodies in contact are a box and the ground: the box is sitting on the ground.
The normal force N is the force exerted by the ground in reaction to the gravitational field strength mg plus
the perpendicular (relative to the ground) component, F,, of the total external force, F, exerted upon the
object. These forces must be equal to prevent any movement perpendicular to the ground. The force Fy, is
the force of friction that spontaneously opposes the tangential (parallel to the ground) component of the
external force, Fp.

Assuming that the box is initially at rest, then these forces are in equilibrium and the resulting net force is
zero, as long as Fy, is smaller than the value PN, where s is the static friction coefficient, the force Fy
scales with the force Fy such that they end up being equal to each other.

When F, is greater than the maximum static frictional force, F, s = UsN the frictional force fails to scale up
with Fp, and the force imbalance will cause the box to start sliding. Once the box is in motion the frictional
force Fyc still impedes the movement of the box but to a lesser degree. This new frictional force is called
kinetic friction and is written F,, = N where p is the dynamic coefficient of friction and, in general, py < .
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mg
In summary:
» Atrest, static friction applies. Fg < Fg 1y = UgN
* In motion, kinetic friction applies. Fs :_Fk = pgN

N and p are directly related to the friction force. N is related to the weight of the object and to the forces
exerted upon this object: the larger N is, the larger the friction. The friction coefficient is related to the relative
smoothness of the surfaces in contact: the smaller p is, the smoother the surface contact and the lower the
friction between the two.

Note that the Coulomb friction law is itself merely an approximation to the way that real objects behave in
contact. It does not have the same status as fundamental physical laws like Newton's law.

Various rigid body dynamics libraries try to simulate Coulomb friction forces. However, there are a number of
serious difficulties with this since the Coulomb friction model is neither well-posed nor consistent. That is,
some contact problems have multiple valid answers and some other problems have no valid answer
consistent with the constraints and the Coulomb model.

Karma offers approximations to Coulomb friction that are both stable and efficient, namely Box Friction and
Normal Force Friction - see below. Other alternatives (below) are to use frictionless contacts, or to use
infinite friction.

Box Friction

Box Friction is the term given to one of the simplified friction models that Karma provides. The user decides
on the force that must be overcome for an object to move. If, for example, this force is 10N, then an applied
force under 10N won't move the object. A force of 11N will move it with a resultant of 1N. This is an
adequate approach for visible realism and it benefits from being fast.

Box friction is a 2D friction model that may be used to specify the friction along two independent
perpendicular directions. These directions are chosen automatically. However, you can set these yourself
using MdtContactSetDirection. The primary direction must be perpendicular to the contact normal. The
secondary direction is obtained from the cross product of the normal and primary direction. The frictional
force for box friction, unlike coulomb friction, does not depend on the normal force. Because friction is fixed
along, and calculated separately for, each direction, the matrix solve is a lot easier. This works nicely if your
object is moving along one of the principal directions because only the frictional force along that direction is
applied. When your object slides in a direction that coincides with one of these axes, it will not change its
direction of motion. When you are moving off-axis, the maximum friction force is applied separately in both
directions and the magnitude is the Pythagorean result of the 2 axial friction values in both directions - hence
the name box (rectangular) friction. You can independently set the frictional force, slip etc. in the primary and
secondary direction. This off axis friction will be greater than the on axis values, and, importantly, it will apply
a force in a direction given by:

-tan1 [(secondary friction)/(primary friction)]

to the primary friction direction. Box friction results in an increase in friction when motion is not along one of
the principal friction axes.

If the object happens to be moving along the principal off axis direction then it will maintain this direction. If it
is moving off the principal off axis direction, the forces will act to turn the object to the nearest principal on-
axis direction.

Note that Coulomb (normal force dependent) and Box friction (not normal force dependent) applies when
objects are in sliding contact (dynamic friction), not rolling contact (static friction).
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The tangential friction forces are applied with an upper limit (fri ctionl and friction2 for each friction
direction). This can be done in either or both of the tangential friction directions. It is a simple approximation
to friction because it does not depend on the normal force and is therefore equivalent to setting Fg 1, to a
constant value. -

Anisotropy in the friction force may be observed as a change in direction of sliding objects. This can be
overcome as follows:

» Set the orientation of the friction axes using MdtContactSetDirection.
» The primary direction must remain perpendicular to the contact normal.

» The secondary direction is then automatically perpendicular to the primary direction and the contact
normal.

* You can independently set the frictional force in the primary and secondary direction.

» If you set the orientation of the friction box based on the direction of travel each frame you should find
that the objects slide in a straight line.

» To avoid the 'swerve’, set the direction along either the primary friction axis, secondary friction axis or
the off axis friction direction. We recommend the principal off axis direction.

Normal Force Friction

Normal Force friction is a refinement of box friction where at each time-step the size of the friction box is
determined by multiplying the coefficient of friction between the two bodies by the normal force computed
during the previous time-step. For bodies in resting contact, this adaptively configures box friction to provide
a more faithful approximation to Coulomb friction.

Frictionless

No tangential friction force is applied at all, so the contacting objects are free to slide over each other. This is
equivalent to setting Fs 1, = F = 0.

Infinite friction

The tangential friction forces are applied with no upper limit, so that the contacting objects can not slide over
each other at all. This is equivalent to setting Fs ,, = .

Slip: An Alternate Way to Model the Behavior at the Contact Between
Two Bodies.

You can opt to use slip whether using friction or not. The advantage of not using friction is that it makes the
maths a bit easier to solve, giving a simulation speed up. Like friction, slippiness and slidiness act in the
plane of contact. When setting slidiness on a contact, then one body will act like a conveyer belt, carrying the
other body along its surface.

Slippiness is a property that can be useful in modeling certain special effects, such as the sideways motion of
a rolling tire. When applying force to a “slippy” object, the object reaches a proportional velocity immediately;
it does not accelerate to that velocity.

With the box friction model, force applied along the friction direction of two objects in contact will cause them
to accelerate along that direction (when the applied force exceeds some threshold). When setting Kea's slip
property, the result is a different behavior. An applied force along the friction direction will result in a relative
velocity in that direction between the objects. The velocity will be the force multiplied by the slip factor, so that
Fs m=Fx=0 andv [J Foi where v is the tangential component of the velocity.

This is useful, for example, when modeling the tires of a vehicle. Applying slip along the transverse direction
of the tire contact point with the ground, provides a good model of “tire slip” that will result in improved
vehicle behavior. The slip should be set to a value that is proportional to the rotational velocity of the tire. If
the vehicle is not moving, set the slip to zero.

Slip is faster to simulate than friction, because there is no discontinuity in the resistive force.
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Setting Properties of the Virtual World - Epsilon €and Gamma Y

The Kea integrator provides two user parameters, € and Y. These can be adjusted to affect how the
integrator steps the system from one state to the next.

Epsilon

At every time-step, Kea must solve a matrix equation of the form ( A + € | )X = B where A is positive semi-
definite matrix and | is the identity matrix, to determine the forces on the rigid bodies. € is added to the
diagonal of the constraint matrix to improve Kea's ability to solve this problem. Sometimes the matrix
problem may not have a solution that satisfies all the constraints. For example, some systems can get into
what are known as “singular” configurations, or redundant constraints may have been specified on the
system. Degenerate systems result in A being singular. If € is zero, this equation may not have a solution. By
making € greater than zero a solution for X can be guaranteed.

In terms of developer usage, the important point is to understand how changing ¢ affects the simulation.
The following symptoms suggest that the solver is having difficulty determining the forces:

< The simulation may jitter around or strange forces may appear with no apparent source. This is the
result of errors in the approximate solution being amplified too much.

« The constraint solver may take too many iterations to find an approximate solution. On some platforms
you will get a warning message indicating this.

In both cases the problem can be fixed by increasing €. The only disadvantage of increasing € is that it
makes the joints and constraints a little bit springy instead of being solid. This is usually not a problem.
Values of € (such as the default 0.01) can be effective, and a value of € near 1 is large and will almost
certainly give visible springiness in the constraints - an indication that € may be too large. Hence, it may be
necessary to decrease € to make contacts 'harder' and prevent visible penetration when:

< dealing with large mass objects (please refer to points 3, 4 and 7 in Chapter 6). A heavy mass sitting on
the ground may penetrate the ground.

« using large gravitational forces.
* using a small time-step.

€ has units of time squared over mass. 1/€ is like a spring constant. If a system has no singularity, then € can
be set close to 0.

Gamma

Every time-step, after Kea has determined the forces on the rigid bodies, the positions and velocities of those
bodies are updated. The way that this is done can cause the joints and other constraints to pull away from
each other, so that objects will not be in their correctly constrained configurations in the new state.

Kea minimizes this problem through a relaxation process, which is controlled by Y, a positive number that is
a relaxation rate.

When positions are updated, projection moves the rigid bodies Y of the way back to their correctly
constrained configurations. Y applies to contacts as well - objects may penetrate a bit before a contact is
generated, and the bodies then have to be projected apart again.

« Ify=0, no relaxation is done. Joints will separate as the simulation progresses.

» IfYis large, a big correction is applied that attempts to zero the constraint violation. Make sure that the
product Yh (h is the time-step) is some reasonable number, preferably less than 0.5 and certainly less
than 1.0. A simulation may become unstable otherwise.

Try and keep yh constant when varying the time-step. Y is more sensitive to time-step variation than €. For
most simulations a value of 0.1<y<0.8 will work well. Yy < 0 or y>1will cause problems and should be
avoided.
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Stacking Boxes

The following code section demonstrates the usage of the important properties that need to be considered
when trying to simulate box stack.

/* .... In this exanple the setup was as foll ows:
#define NO_BOXES 21

const MeReal box_side[] = {(MeReal )1.0, (MeReal).3, (MeReal)l.0};
const MeReal box_separation = (MeReal)2.0

A mass of 5.0kg and mass matrix {5,0,0, 0,5,0, 0,0,5} were used for each box
The y position for each box was given by (i+1)*box_side[ 1] *box_separation for box i

*/

wor | d- >par ans. gravi ty[ 1]
/* Epsilon reduced slightly

wor | d- >par ans. epsi |l on = (MeReal ) 0. 005;
/* Gamma i ncreased to 'force' objects apart nore quickly */

wor | d- >par ams. ganma = ( MeReal ) 5;

/* Turn on the world option to turn objects off when they are novi ng bel ow
certain user determned thresholds */

Mit Wor | dSet Aut oDi sabl e(worl d, 1);

/* The autodi sabl e paraneters nay need increasing to turn objects off sooner
Note that not all paraneters need to be increased by the sane factor - this was
done for conveni ence. Reconmend setting each individually. Set r=2 for 21 boxes*/
Mdt Wor | dSet Aut oDi sabl eVel oci t yThreshol d(worl d, r*(MeReal )0.02);

Mt Wor | dSet Aut oDi sabl eAccel erati onThreshol d(world, r*(MeReal)O0.5);

Mdt Wor | dSet Aut oDi sabl eAngul ar Vel oci t yThreshol d(worl d, r*(MeReal )0.001);

Mt Wor | dSet Aut oDi sabl eAngul ar Accel erati onThreshol d(worl d, r*(MeReal)O0.002);

= -(MeReal ) 9. 81;
to 'harden' contacts and make things less 'springy' */

/* For each box, set the nmass, nmss distribution and start position */

/* Karma collision was initialised and used to determ ne the box collisions. Refer
to Chapter 4 for information on using Karnma Col |ision

/* Use the bridge to set up materials for the box and ground and then define box-
box and box-ground contact properties */

/* Use the Nornmal Force Friction nodel for box-ground contact */

Mt Cont act Par ansSet Pri maryFri cti onModel (box_ground, MltFricti onMbdel Nor mal For ce) ;
Mt Cont act Par ansSet Secondar yFri cti onvbdel (box_ground, Mt Fricti onMbdel Nor nal For ce) ;
/* Use friction in both the primary and secondary directions */

Mt Cont act Par ansSet Type(box_ground, Mt Cont act TypeFri ction2D);

/* Set the coefficient of friction */

Mt Cont act Par ansSet Fri cti on(box_ground, (MeReal)O0. 4);

/* Alowrestitution stops objects bouncing */

Mt Cont act Par ansSet Resti tuti on(box_ground, (MeReal)O0.01);

/* The default Box Friction nodel is used for box-box contacts */
Mt Cont act Par ansSet Type( box_box, Mt Cont act TypeFricti on2D);

Mt Cont act Par ansSet Fri cti on(box_box, (MeReal)O0.1);

Mt Cont act Par ansSet Rest i tuti on(box_box, (MeReal)O0.01);
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External Forces, Torques and Impulses

External forces, torques and impulses can be applied to virtual world objects at any time by the user.
They can be applied at:

« the dynamic position - not the center of mass - of the object using the MdtBodyAdd* function.

e some position vector in the objects reference frame using MdtBodyAddtAtPosition.

where * is Force, Torque, or Impulse and T is Force or Impulse. Impulse imparts a definite amount of
momentum to a body. Force features:

* When applying a force, note that it is applied only at the next simulation time-step at which the object is
included in the simulation. If your object is not included in the simulation for ten time-steps, the force will
be applied at the following time-step when it is.

< Each body has a force accumulator that is used to sum the forces to be applied to that body at the next
time-step.
« After the time-step, the object’s force accumulator is reset to zero.

« Because the force applied is reset to zero after the simulation of the body, to apply a constant force to a
body, the force has to be added at each simulation step.

e The accumulated force is applied for the duration of the time-step, not the sum of the time-steps since
the individual forces was applied.

< External forces applied to a body do not increase the required CPU time when the body to which they
are applied is simulated.

« If the center of mass of a body is changed - which is independent of dynamic position - the user will
need to account for this offset when applying forces.

The above applies to torques and impulses. However, note that applied impulses are time-step independent.
The impulse imparts a specific amount of momentum (force x time) to an object. Impulse is useful for
simulating fast impacts such as gun shots.
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Overview of Collision Detection

The Karma Collision library (Mcd) provides a collection of algorithms that address the collision detection
needs of 3D games and other applications. These algorithms are designed specifically to produce the
information needed for real-time simulations of rigid bodies.

The Karma Collision library has two kinds of collision tests, the farfield and nearfield. The farfield algorithm
uses bounding boxes to efficiently generate all potentially colliding model pairs. The nearfield is then used to
test each pair and to generate contact information.

In Karma, the space manages the farfield, and the framework manages the nearfield. The framework
contains a table of all geometry types and a table of intersection functions to test nearfield collision between
geometry pairs.

The following diagram illustrates how collision is integrated with the Karma pipeline.

T—[_Iser nieraction |:| Persistent Structures

- Persistent
Collections of
McdSpaceUpdateAll Structures
@ Closed Source
Function
McdSpaceUpdateAll
‘f” happens before ‘g’
g
McdSpace =
d
hl
f ‘f” writes data to ‘a’
Information about Information —>a
colliding pairs of static/disabled
models bodies.
4 f 4—a ‘f’ reads data from ‘&’
Bridge Dynamics
P2 ‘f’ reads and writes
datato ‘a’

The main farfield function, McdSpaceUpdat eAl | , generates potentially colliding pairs. The bridge then
tests each pair using the nearfield functions to generate contacts. The contacts are input to the dynamics
system.

Using Collision Detection within a Universe

The MstUniverse offers a convenient way of integrating collision and dynamics. The three principle universe
functions call the collision library as follows.

* Mst Uni ver seCr eat e creates the framework using McdInit, and creates the space using
McdSpaceAxisSortCreate.

« Mst Uni ver seSt ep calls farfield test McdSpaceUpdateAll, and nearfield tests via
MstBridgeUpdateContacts.

e Mst Uni ver seDest r oy includes deallocation of the framework and the space.

Explanation of Model, Geometry, and Body

The Karma Collision Detection library tests for collisions between entities in a space. These entities are
called models. Each model contains a geometry instance, which indicates the shape of the model. The
model may also contain a pointer to a body, which describes all the dynamical properties of a model. A
model does not have a body if it is fixed in space (non-dynamic).
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The geometry instance has a pointer to a geometry that describes the shape of the model, and a pointer to a
transformation matrix (TM) that describes the location and orientation of the model. Usually it is convenient
to make the geometry instance point to the TM of the model’s body (unless the model has no body, in which
case the geometry instance is given its own TM.) A geometry can be shared by multiple geometry instances.

model I
body

Making a Model with a Box Geometry

Before you create a model, you should first create a universe. This will create a collision space and a
framework. The following code segment creates a universe.

/* Default universe sizes. */
Mst Uni ver seSi zes sizes = Mt UniverseDefaultSizes;

/* Create the universe and get the framework ID. */
Mst Uni ver sel D uni verse = Mst Uni ver seCr eat e( &si zes) ;
McdFramewor kI D framewor k = Mst Uni ver seGet Fr amewor k( uni ver se) ;

To create the model, first create the geometry that the model will use. The following creates a geometry and
a model.

/* Create geonetry for a box with size dinensions 2x1x3. */

McdGeonet ryl D boxGeom = McdBoxCreat e(franmework, 2, 1, 3);

/* Create a nodel using the box geonetry. The density of the box is 1. */
McdModel | D boxMbdel = Mst Mbdel AndBodyCr eat e( uni verse, boxGeom 1);

To create another box that has the same shape and size, another geometry does not have to be created.
The same geometry can (and should) be used to create further models. For example,

/* Create another nodel using the box geonetry. */
McdModel | D boxModel 2 = Mst Mbdel AndBodyCr eat e(uni verse, boxGeom 1);
MstModelAndBodyCreate:
« creates a model using McdMbdel Cr eat e.
e creates a body using Mit BodyCr eat e, enables it and sets mass properties.
» sets the model to point to the body using McdMbdel Set Body.
« inserts the model into the space using McdSpacel nsert Model .

Making a Model with a Convex Mesh Geometry

Convex mesh is a geometry that can represent any finite convex polyhedron. A convex polyhedron is a
shape made of flat polygon faces. It cannot include any holes or any edges that are indented.

To create a convex mesh, only the vertices of the polyhedron need to be specified. The geometry code will
use the Qhull (please refer to README_Qhull.txt in ....\ metoolkit\3rdParty) algorithm to compute the faces
and edges of the polyhedron. The vertices are specified as an array of MeVector3s. Each MeVector3
contains three floating point numbers containing the 3D space vector position of a vertex.

The following code creates a four-sided pyramid.

/* These are the five points of the pyramd. */
MeVect or 3 pyram dPoi nts[] = {
{02 o0}, {-3 -1, -3}, {3, -1, -3}, { -3, -1, 33}, {3, -1, 31}};
/* Create a pyram d geonetry. */
McdGeonet ryl D pyram dGeom = McdConvexMeshCr eat eHul | (f ranmewor k, pyram dPoi nts, 5, 0);
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/* Create a nodel using the pyranmid geonetry. */

McdModel | D pyrani dvbdel = Mst Mbdel AndBodyCr eat e(uni verse, pyram dGom 1);
Note that by default, the center of mass of the body is at the origin of the geometry. This should be taken into
consideration when defining the points of the convex mesh. The body center of mass can be offset from the
geometry origin using Mit Body Set Cent er Of MassRel at i vePosi ti on. Note that this will cause a small
performance overhead in dynamics.

It is permissible to over-specify the points of the convex mesh. Any points that are redundant, or in the
interior of the convex hull, are ignored.

Creating a Model with an Aggregate Geometry

A model can contain only one geometry instance, so what if a model that consists of several geometries is
needed, such as a basic chair consisting of a rectangular box for the seat and four cylinders for the legs. To
accomplish this, use a special geometry called an aggregate. The aggregate geometry may contain any
number of simple primitive geometries (sphere, box, cylinder or sphyl), g1, g2, g3, as described in the
following diagram..

model —
body

aggregate | - ( instance /\ >@

g1 92 o3 (1) > )»(is)

When the model is created with an aggregate geometry, the geometry instance in the model is created with
child instances, i1, i2, i3; one instance for each primitive geometry comprising the aggregate.

Each child geometry, g1, g2, g3 contains a relative TM that specifies the translation and rotation of the child
with respect to the parent reference frame. The transformation of each child instance, i1, i2, i3 is the
composition of its respective geometry relative TM and the parent geometry instance TM (which is usually
the body TM).

The child geometry instances are allocated from a pool that has a default size of zero. You must set the pool
size to at least the total number of aggregate child instances you will need. The following code does this:

/* Set pool size for aggregate child instances. */
si zes. col i si onCGeonet ryl nst ancesMaxCount = 100;
uni verse = Mst Uni ver seCreat e( &si zes);

Now create a stool where the top of the stool is a box and the four legs are cylinders:

MeMatri x4 tm

McdAggr egat el D ag;
McdGeonetryl D seat, |eg;
McdModel | D nodel ;

/* Create seat and |l eg geonetries. */
seat = McdBoxCreate(franework, 2.2f, 2.2f, 0.1f);
| eg = McdCylinderCreate(framework, 0.1f, 2);

/* Create an aggregate geonetry to hold five parts. */
ag = McdAggregat eCreat e(framework, 5);

/* Conbine a seat and four |legs to make the stool. */
MeMat ri x4TMvakel dentity(tm;
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MeMat ri x4TMSet Position(tm 0, 0, 1);
McdAggr egat eAddEl ement (ag, seat, tm;
MeMat ri x4TMSet Position(tm 1, 1, 0);
McdAggr egat eAddEl enent (ag, leg, tm;
MeMat ri x4TMSet Position(tm 1, -1, 0);
McdAggr egat eAddEl enent (ag, leg, tm;
MeMat ri x4TMSet Position(tm -1, 1, 0);
McdAggr egat eAddEl enent (ag, leg, tm;
MeMat ri x4TMSet Position(tm -1, -1, 0);
McdAggr egat eAddEl enent (ag, leg, tm;

/* Create a nodel and body for the stool. */
nmodel = Mst Model AndBodyCr eat e(uni verse, ag, 1);

While all four legs of the stool use the same geometry, each leg has a different relative TM.

The dynamics system computes the TM for an instance of a component of an aggregate by composing the
relative transform of the component and the transform of the instance corresponding to the component’s
parent. That is, by mapping the component into the parent’s space, and then into world space. Although this
transformation is not stored by default, it can occasionally be useful, such as when rendering the aggregate
by rendering each component separately. In this case, assign a pointer to an MeMat r i x4 to the instance
corresponding to that component, by using the function McdGeoret ryl nst anceSet Tr ansf ornPtr.
Then, when the model is updated the TM of the component will be stored in the allocated space. The
following code allocates memory for the instances of the stool aggregate.

McdGeonet ryl nst ancel D parent, chil d;
MeMatri x4Ptr newTM

parent = MdMbdel Get Geonet ryl nst ance( nodel ) ;
for (i =0; i <5; ++i)
child McdGeonet ryl nst anceGet Chi | d(parent, i);

newlM = (MeMatrix4Ptr) mall oc(sizeof (MeMatrix4));
McdGeonet ryl nst anceSet TransfornPtr (child, newTM;

}
Materials are specified on a per-instance basis, so different materials may be specified for each instance of
each component of an aggregate.

Constructing an Immovable Model, such as a Terrain

Often in games immovable objects are required for terrain, buildings and other inanimate non-dynamic
objects. Immovable objects are needed by collision detection, but do not exhibit a dynamic response.
Therefore an immovable object has a collision model, but no dynamic body. The following code creates the
geometry and model for a infinite flat plane.

/* Allocate a TMand set it to the identity matrix. */

MeMat ri x4Ptr planeTM = (MeMatri x4Ptr) mall oc(si zeof (MeMatrix4));
MeMat ri x4TMvakel dentity(pl aneTM ;

/* Create geonetry and nodel for an infinite flat plane. */
McdGeonet ryl D pl aneGeom = McdPl aneCr eat e( f r amewor k) ;
McdModel | D pl aneMbdel = Mst Fi xedMbdel Cr eat e(uni verse, pl aneGeom pl aneTM;

It is very important to note that the Mst Fi xedMbdel Cr eat e API does not make a copy of the TM.
Therefore the matrix must be allocated using malloc, or some other persistent location. The functions that
retain a pointer to the TM are:

e Mt Fi xedMWbdel Cr eat e.

e MdModel Set TransfornPtr.

e MdGeonetryl nstanceSet TransfornPtr.
e MdMdel Set Rel ati veTransfornPtrs.

McdPl aneCr eat e creates a plane through the origin whose normal points along the z. This is fine if the
universe uses the z-axis for the "up” direction. However, if the universe uses the y-axis for "up” then the
plane TM needs to be rotated around the x-axis by Tv2.
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Disabling and Enabling Pairs of Models

MeBool MEAPI McdSpaceDi sabl ePai r ( McdModel I D ml, McdModel ID nR )

prevents a pair of collision models, mL and n2, from appearing in the output pairs of a McdSpace, thus
preventing any collision between the two models.

After a call to McdDi sabl ePai r (), if in the last time-step the list of pairs returned by

McdSpaceCet Pai r s() contained a hello or staying pair involving the collision models ml and n®, then that
pair will appear as a goodbye pair in the next call to McdSpaceCet Pai r s() . After that point, no more
references to that pair will appear, regardless of whether they are in close proximity to each other. If

MeBool MEAPI McdSpaceEnabl ePai r ( McdModel I D ml, McdModel ID nR )

is subsequently called on the same pair of models, the pair will reappear as a new hello Mcdvbdel Pai r
object, if the pair is in close proximity to each other. Refer to "Testing Collision" p. 74 for more explanation of
hello, staying, and goodbye pairs.

The status of the pair can be checked with

MeBool MEAPI McdSpacePairl sEnabled ( McdMbdel ID mi, McdModel ID nR )

Pairwise disabling of objects is generally quite flexible. It can be cumbersome if many pairs of objects are
disabled, or objects are constantly added and removed from the collision space, since the collision space
tracks disabled pairs. An alternative is to create a culling table, which is a symmetric pairwise matrix of flags,
using the function

McdCul |'i ngTabl e * MEAPI McdCul | i ngTabl eCreate( int size)
The function

McdCul | i ngTabl e * MEAPI McdCul | i ngTabl eSet ( McdCul | i ngTabl e *const tabl e,
MeU32 a,
MeU32 b,
MeBool fl ag)

can then be used to set the value of an entry in a culling table. When the model is inserted into the farfield, it
can be assigned a culling table, a culling index, and a culling ID, using the functions

voi d MEAPI McdSpaceSet Mbdel Cul | i ngPar anet er s( McdSpace *space,
McdModel | D cm
McdCul | i ngTabl e *t abl e,
int cullinglndex,
int cullinglD);

Or alternatively (and more efficiently) it can be inserted into the collision space with culling parameters with
the function
voi d MEAPI McdSpacel nsert Model WthCul i ng( McdSpace *space,
McdMbdel | D cm
McdCul |i ngTabl e *tabl e,

i nt cul l'i ngl ndex,
int cullinglD;

Two models in the space will act as though they are pairwise disabled if the following conditions are met:

» they both have culling parameters.
» they have identical culling table and culling ID values.
» the flag indexed by their culling indices in the culling table is set (note that the table is symmetric).

Although it is possible to change the culling parameters of a model within the space to point to a different
culling table, or change the culling ID or index, note that the table itself should be considered constant during
the simulation. Behavior is undefined when assigning a model a set of culling parameters and then
changing the underlying table.
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Time Of Impact

Since Karma simulates physics numerically, with a discrete time-step, some collisions may not be detected.
Consider a ball travelling at high velocity toward a thin box. If at time t the ball was near to entering the box
(not touching it), and that a time t+At later the ball position had placed it on the other side of the box, the
system would not detect any collision between the ball and the box. For this system, if there was not an
intersection between the two models at a given time-step then no collision occurred.

To prevent this from happening, utility functions were created to help detect such virtual collisions. These
utilities work by using approximations and are therefore not foolproof.
MeBool MEAPI M dSaf eTi ne ( McdModel Pair* pair,

MeReal naxTi e,

McdSaf eTi mreResult* result )
performs appropriate SafeTime (time of impact and swept volume)
computation on input pair. The estimated time of impact is returned in
McdSaf eTi mreResul t resul t. Models are assumed to be synchronized,
that is, their transforms correspond to positions at identical instants of time.
The model's linear and angular velocities are used to describe the motion

Currently, only some

model interactions can use

the SafeTime utility: {sphere,
box, cylinder}/{sphere, box,

) . . o ) : cylinder} and plane/{sphere,
of the object. The input value of maxTi e indicates the maximum time for box} interactions. Other

travel given the model linear and angular velocities. The time-step for a interactions will return a time
dynamical simulation is a typical value for maxTi nme. For a value of 1, the of impact of maxtime.

object is assumed to translate by the entire linear velocity vector. The
return value is 1 if the proper Saf eTi ne() function was available, O otherwise.

Querying Line Segment Intersections

Two utility functions from McdSpace are available in Mcd to perform intersection tests, one that finds the first
point of intersection between a directed line and geometries, and one that finds all the points of intersection
between a directed line and geometries.

i nt MEAPI McdSpaceGetLi neSegFirstlntersection

(
McdSpacel D space,

MeVector3Ptr i nOri g,
MeVect or 3Pt r i nDest,
McdLi neSegl nt ersect Result *out Resul t

)
finds first intersection of an oriented line segment with all models in the collision space. The arguments
i nOri gandinDest are pointers to MeVect or 3 variables representing the first point and the second point
on the line segment. The argument out Resul t is a structure containing the returned line segment
intersection data. 1 is returned if an intersection is found, O otherwise. See the notes below.

i nt MEAPI MdSpaceGetLi neSegl ntersections

McdSpacel D space,

MeVector3Ptr inOrig,

MeVect or 3Ptr i nDest,

McdLi neSegl nt er sect Resul t *out Li st
i nt inMaxLi st Size

)
finds all the intersections of an oriented line segment with all models in the collision space. The arguments
i nOrigandinDest are pointers to MeVect or 3 variables representing the first point and the second point
on the line segment. The argument out Li st is a structure containing the returned line segment intersection
data. The value i nMaxLi st Si ze is the maximum number of intersections that will be reported. It returns the
number of intersection results. See the notes below

The McdLi neSegl nt er sect Resul t structure stores the intersection data.

Structure Member Description

McdModel | D nodel Collision model intersecting with the line segment.
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Structure Member Description

MeReal posi tion[3] | Intersection point.

MeReal nor mal [ 3] Model normal at intersection point.

MeReal di st ance Distance from the first end point of line segment to the intersection point.

To perform intersection tests between line segments and individual models use

unsi gned int MEAPI McdLi neSegl ntersect (const McdMobdel | D cm

MeVector3Ptr inOrig,

MeVect or 3Ptr i nDest,

McdLi neSegl ntersect Resul t* out Overl ap )
which intersects a line segment with a collision model. The variable cmrepresents the collision model. The
variables i nOri g and i nDest are pointers to MeVect or 3 representing the first and second point on the
line segment. The variable out Over | ap structure containing the line segment intersection data. Returns 1 if
an intersection was found, otherwise 0. See notes in the McdSpaceGet Li neSegl nt er secti ons()
function above.

i nt MEAPI McdSpaceGCet Li neSegFi r st Enabl edl nt ersecti on
( McdSpacel D space,

MeVector3Ptr inOrig,

MeVect or 3Pt r i nDest,

McdLi neSegl nt er sect Enabl eCal | back filterCB,

void * filterData,

McdLi neSegl nt ersect Result *out Result )
is identical to McdSpaceCet Li neSegFi r st 1 nt ersecti on(), but allows a callback function to be
provided that selectively exclude some models from the query. For example, in a line of sight application,
invisible or transparent may need to be excluded. The argumentfi | t er CBis a pointer to a function that
takes an McdMbdel | Dand fi | t er Dat a and returns an i nt . The line query is performed on every model
for which the callback returns a non-zero value. The argument out Resul t is a structure containing the

returned line segment intersection data. It returns 1 if an intersection is found, otherwise O.

Notes:

« Ifthe pointi nOri g is inside any model, then the first McdLi neSegl nt er sect Resul t structure is
returned with distance zero and position equal to i nOri g and the normal is undefined.

» The tests for line intersection work with all geometries except TriangleList. Intersections with, and
occlusions by, TriangleList models are ignored. The TriangleList intersection testing is best handled by
application specific code.

* At most one intersection is reported per model, where the line segment first enters the model. An
intersection is not reported where the line passes out of the model, nor if the line re-enters the model. In
the case of an aggregate model, only the first intersection is reported, even though the line segment
may pierce the aggregate several times.

Testing Collision Directly

In most cases, collision detection is performed by the bridge component in the function Mst Uni ver seSt ep.
However, there may be some cases when a direct test for collision between two models is needed. To test
collision first create and initialize a model pair. Then invoke the farfield test with McdNear by, and the
nearfield test with Mcdl nt er sect . Both of these return a boolean that is false if the models do not touch.
The following example code demonstrates testing collision directly.

McdModel Pair *pair;
Mcdl ntersect Result result;

/* Create and initialize the nodel pair. */
pair = (McdMWodel Pair *) calloc(1, sizeof *pair);
pai r - >nodel 1 = nyModel 1;

pai r - >nodel 2 = nyModel 2;

McdHel | o(pair);

/[* Call farfield test. */
if (McdNearby(pair))

760 « Collision



MathEngine Karma User Guide

/* Allocate space for the result. */

result.pair = pair;

resul t.contact MaxCount = 20;

result.contacts = (MdContact*) calloc(20, sizeof(MdContact));

/* Call nearfield test which also generates contacts. */
if (Mcdlintersect(pair, &esult))

/* Process result here... */

free(result.contacts);

/* Deallocate the pair. */

McdGoodbye(pair);

free(pair);
Be aware that McdSpaceUpdat eAl | is a far more efficient way to generate pairs than calling McdNearby
for every pair of models in a universe.

Creating a Model Without Using the Universe

The Mst Uni ver se functions hide many of the details required to initialize the collision library and create a
model. Eventually, it may be useful to understand these details, especially for performance tuning an
application.

This following example demonstrates initialization of the collision library instead of calling

Mst Uni ver seCr eat e. The function Mcdl ni t takes four parameters: geoTypeMaxCount is the maximum
number of user-defined geometry types, modelCount is the maximum number of models in the universe,
instanceCount is the maximum number of aggregate component instances in the universe, and lengthScale
is the length of a medium-sized object in the universe. The function McdSpaceAxi sSor t Cr eat e takes four
parameters: the framework, axes is which axes are tested for overlap, objectCount is the maximum number
of objects the space will hold, overlapCount is the maximum number of overlapping pairs the space will
handle.

/* Create the collision detection framework for geonetry types. */
McdFramewor kI D franework = Medlnit (0, 50, 0, 1);

McdPrimtivesRegi ster Types(framework);

McdPrimtivesRegi sterlnteractions(franework);

/* Create the space for farfield collision testing. */
McdSpacel D space = McdSpaceAxi sSort Creat e(franmewor k, MdAl | Axes, 50, 100);

The following example creates a fixed model plane. The body of the plane model is NULL, hence the TM for
the geometry instance must be allocated and set.

/* Create a plane geonetry and nodel for the terrain. */
pl aneGeom = McdPl aneCr eat e(f r amewor k) ;
pl aneMbdel = McdModel Creat e( pl aneGeon) ;

/* Set the plane body to NULL and set the TM */
McdModel Set Body( pl aneMbdel , 0);

McdModel Set Tr ansf or nPtr (pl aneMbdel , pl aneTM ;

/* Insert the plane into the space and flag it as frozen. */
McdSpacel nsert Model (space, pl anehMbdel);

McdSpaceUpdat eMbdel ( pl aneMbdel ) ;

McdSpaceFr eezeModel ( pl aneMbdel ) ;

This example creates a box and insert it into the collision space. It is assumed that boxBody is a valid
dynamics body.

/* Create a box and insert it into the collision space. */
boxGeom = McdBoxCreate(framework, 2, 1, 3);

boxModel = McdMbdel Creat e( boxGeon);

McdMbdel Set Body( boxModel , boxBody) ;

McdSpacel nsert Model (space, boxMdel);
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Geometrical Types and Their Interactions

Overview

Karma Collision offers many concrete geometrical types to choose from when defining collision model
shape. The selected geometry should correspond closely, but not necessarily exactly, to the geometry of the
3D graphics model rendered onto the screen.

Simpler geometrical types require less memory to hold the representation, and more straightforward
algorithms to operate on them. A wide selection of geometry types gives flexibility in choosing trade-offs
between performance, memory and geometrical accuracy.

Register Types of Geometries to be Used The currenly

. Lo . ) supported primitive
Mst Uni ver seCr eat e calls McdPri miti vesRegi st er Types(), which collision geometries

registers all the primitive geometry types and all the interaction functions are:
(nearfield collision tests) between the primitive types.

Box
To register only the required geometry types, hence saving some space in cvlind
memory, replace or rewrite Mst Uni ver seCr eat e to call successively ylinaer
Mcd* Regi st er Type() where the asterisk is one of the collision geometry Plane

types, Aggregate, Box, ConvexMesh, Cylinder, Plane, Sphyl, Sphere or

Sph
TriangleList. phere

Sphyl
TriangleList

Mcd* Regi st er Types can be called, where the asterisk is either

 Primtives toregister all primitive geometries.

The currently supported
non-primitive collision
Remember that both the geometry types and the interaction algorithms must be geometries are
explicitly registered with the Mcd system at initialization. If, for a particular
geometry type — geometry type combination, there is no algorithm registered or
available, the interaction will be ignored. ConvexMesh

» Spher eBoxPl ane to registers sphere, box and plane.

Aggregate

Intersection Functions

The following figure lists the intersection functions available for all pairs of geometry types provided in Karma
Collision.

Sphere Development State of the Intersection Functions of
Box i All Pairs of Geometrical Types.
Cylinder . . .
Convex J%I% There is no need to test static geometry types (trilist
Aggregate 7 and plane) against one another.
Sphy NAT4%4%4 $|
TriangleList ll l
Plane l
L3358
="ZtEs
O O §

762 « Collision



MathEngine Karma User Guide

Geometrical Primitives

Primitive geometrical types are shapes defined by a small and fixed number of parameters. They can
represent various specific types of curved surfaces exactly by parameters and specialized algorithms, not by
discretized (triangulated) approximations. They are lightweight, fast and geometrically accurate. A number of
non-primitive types are also available for defining models having more general surface shapes.

The following primitive types are available:

Sphere

Box

Plane
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Cylinder

Sphyl

The figures above illustrate the primitive geometrical types in their local coordinate system, and indicate the
parameters used to specify each. There are two conventions common to all primitives:

» The (uniform density) center of mass is placed at the origin. This is convenient and efficient for working
with dynamics.

» Where relevant, the z-axis is the one about which there is a symmetrical distribution of volume. This
applies to the cylinder, plane and sphyl.

4 A

Triangle List is a primitive intended to allow triangulation of static geometry such as terrain. A triangle list is
created using a bounding box and a user-supplied querying callback. If the Karma farfield detects a collision
between the bounding box of the triangle and the bounding box of another object, it uses the callback to
query for a list of McdUser Tri angl es near the object, and then produces a list of contacts by checking for
intersection of the object with each triangle.

Triangle List

When representing a surface as a triangle list it is useful to be able to distinguish between triangle edges
representing edges in the surface, and those created as artifacts of the triangulation. In order to facilitate this,
the McdUser Tri angl e structure contains a f| ags field that allows combinations of the following values:
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Flag Description

kMcdTri angl eUseSnal | est Penetrati on | Use the normal that minimizes translational
distance required to separate the object and
triangle. If this is not set, use the triangle face

normal.
kMcdTri angl eUseEdgeO Make edges sharp, that is, generate contacts
X where the triangle edges intersect with the
kMedTri angl eUseEdgel object.
kMcdTri angl eUseEdge?2
kMcdTri angl eTwoSi ded Triangle is two sided. If not set, contact

normal is reversed if its dot product with the
supplied normal is negative.

kMcdTri angl eSt andar d Set all the above flags (produces behavior
equivalent to Karma 1.0)

ConvexMesh

The ConvexMesh geometry type can be used to specify a geometry representing a closed convex object.

Aggregate
':

il
i

The Aggregate geometry type can be used to group together
several existing geometries to produce a new geometry.
Aggregates can be nested arbitrarily, and like other geometries,
shared between several models.

Composite geometries do not

exist in Karma 1.2.

In order to create an aggregate, the maximum number of component geometries it contains must be
specified.

McdAggr egat el D MEAPI McdAggr egat eCreate (McdFramework *frane, int nmaxChildren)
Components can then be added to the aggregate using

i nt MEAPI McdAggr egat eAddEl enent (McdAggr egat el D agg,

McdGeonet ryl D geom
MeMatri x4 rel TM

where agg is the aggregate that is being added to, geomis the geometry to be added to the aggregate and
r el TMis the relative transform of the component that is being added. The aggregate element will keep a
pointer to the relTM, therefore relTM must be allocated on the heap, or some persistent location.
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Advanced Features

Collision Spaces

When the collision models have been created, a collision space to hold them must be made. The following
function creates a McdSpace object whose models are sorted by X, y, and z axes:
McdSpacel D MEAPI McdSpaceAxi sSort Creat e ( McdFranmewor kl D fwk, int axes,

i nt objectCount, int pairCount )
The axis sorted space produced by this command is efficient at determining when pairs of models are
nearby. The axes variable is a bit field that specifies which axes to test for model proximity. Its possible
values are a combination of the bits McdXAxi s, McdYAXi s, and McdZAxi s or the value McdAl | Axes,
which is a constant equal to ( McdXAxi s+McdYAxi s+McdZAxi s) . The variables obj ect Count and
pai r Count are the maximum number of objects the space may hold and the maximum number of
overlapping pairs the space will handle respectively.

The function McdSpaceAxi sSort Cr eat e() calls McdSpaceBegi nChanges(), so that
McdSpacel sChangi ng() is true directly after creation, allowing the McdSpace to be populated
immediately via McdSpacel nsert Model (). Hence,

McdSpacel D space = McdSpaceAxi sSort Cr eat e( McdFr amewor kI D f wk, MdAl | Axes,

MAX_BODI ES, AV_COUNT* MAX_BCDI ES) ;

creates a space with room for AV_COUNT* MAX_BQODI ES, where the constant AV_COUNT is the expected
number of objects near to a given object. This is less than the space needed for the maximum number of
pairs, MAX_BODI ES?.

Note that AV_COUNT must be empirically determined by the programmer. If a simulation uses a few objects
placed in a large room, it is reasonable to expect that any object could be nearby to at most two other
objects, yielding a value of two for AV_COUNT.

However, if a few marbles are placed in a large bag, where any one of
these marbles may collide with any other marble at one time, then
AVE_NEARBY would be of the order of MAX_BODI ES. Of course, if the
number of marbles is large and / or the bag is small enough, the
marbles would not be as free to move and interact with each other. In
this case, every marble could only be in close proximity with at most the computed physics will be
twelve other marbles, leading to a value of AV_COUNT of at most wrong. This is because
twelve. contacts will not be generated.
In the debug library a warning
will be output.

Be careful, if the
number of pairs of nearby
objects is higher than
pairCount then a simulation
may seem to run correctly but

When a collision space is first created, it is empty. Models must be
inserted into the collision space, one by one, and the space built. Note
that a McdModel object can only be present in one McdSpace at a
time.

MeBool MEAPI McdSpacel nsert Model ( McdSpacel D space, MdModel I D col | Model )

inserts a collision model into a collision space. It returns 1 if successful or O if not. This can only be called when
McdSpacel sChangi ng() is true.

The space will now keep track of the volume occupied by col | Model and detect any close proximities with
other models present in space. Note that the function McdSpacel nsert Model () does not imply
McdSpaceUpdat eModel () : the latter function must be called explicitly (or via McdSpaceUpdat eAl | ).

When all the collision models have been added to the collision space, the space itself needs to be built. This
is accomplished by calling

voi d MEAPI McdSpaceBuil d (McdSpacel D col | Space)

to indicate that most models have been inserted. Calling McdSpaceBui | d() does not prevent later
insertions or deletions, but for large changes the running time might be slightly affected for certain
implementations of McdSpace. The function McdSpaceBui | d() should be called after the last insert before
the simulation begins.
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To add models after space has been built is a bit different than at initialization time. When using Karma
Dynamics through the Simulation Toolkit bridge, the procedure to add a model is the same as during
initialization. When only using Karma Collision, the models need to be added in a change block. Here is an
example:

* McdSpaceBegi nChanges( space) /1 if outside a change bl ock
McdSpacel nsert Model (space, nodel )
McdSpaceUpdat eMbdel ( nodel )
McdSpaceEndChanges( space)
[ handl e hell o pairs]
Steps marked with * are usually done in the simulation loop and typically need not be done again upon insert,
unless special handling of pairs involving inserted models is heeded.

* %k o

Transform and Synchronization with Graphics

Ensure that the collision model's coordinate system matches that of the 3D graphics model that is being
displayed. This often involves a three-way synchronization between the dynamic body position and
orientation, the graphic model rendered on the display, and the collision model used for determining
contacts.

The collision model's transform is an MeMat ri x object. It must be explicitly allocated, initialized, and then
assigned to its McdModel using:

voi d MEAPI McdModel Set TransfornPtr (McdMbdel ID cm MeMatri x4 geonetryTM;
Failure to perform this step, results in the default value returned by

McdMbdel Get Transf or nPt r () being NULL, rather than a pointer to When integrating with
an identit i Karma Dynamics, the
y matrix.
by default shares
If an McdMbdel is not inserted in, and hence not updated by, an the 's TM, in which
McdSpace, the user must call McdMbdel Updat e() whenever the case the above step is not
transform changes. This is handled automatically by McdSpace. required.

McdModel Updat e() can optionally invoke a user-written callback function. This can be set by the function
McdModel Set Updat eCal | back() .

Transition

int MEAPI McdSpaceGet Transitions ( McdSpacel D s,
McdSpacePairlterator* iter,
McdMbdel Pai r Cont ai ner* a )

has the same effect as McdSpaceCet Pai r s( ), only no staying pairs are reported.

It is useful to isolate the new events produced by a set of modifications in a changes block, and have them
processed separately from (or earlier than) the remaining events. For example:

/* Start a change bl ock */
McdSpaceBegi nChanges(s) ;
McdSpaceRenoveModel (s, nl) ;
McdSpaceRenmoveMdel (s, n2);
/* End a change bl ock */
McdSpaceEndChanges(s) ;

/* Get just the transition events due to RemoveModel () calls */
McdSpaceGet Transi ti ons(s, pairs);

/* handl e bookkeepi ng for goodbye pairs*/

Mst Handl eTransiti ons( pairs );

McdSpaceBegi nChanges(s) ;

/* do other nodifications, updates .. */
McdSpaceEndChanges(s) ;
/* Now get all the nodel pairs - including staying pairs */

McdSpaceGet Pairs(s, pairs);
/* handl e hell o, stayi ng and goodbye pairs*/
Mst Handl eTransiti ons( pairs );
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Static Models

Collision models that are not going to move for a while can be frozen in the collision space. This reduces the
number of models that need to be updated, thus increasing speed. To do this use

MeBool MEAPI McdSpaceFr eezeModel (McdModel 1D cm)

to inform the system that a collision model's TM will not change value. The collision model remains in the
frozen status until McdUnf r eezel nSpace() is called.

McdModel objects are by default in unfrozen status. This information is used for optimization opportunities
by the McdSpace object in which a model is currently active. cmwill be ignored by subsequent calls to
McdSpaceUpdat eAl | Model s() .

Subsequent calls to McdSpaceMdel | sFrozen() using cmwill return true. The bounding volume
associated with cmwill no longer be changed, keeping the values it had the last time that

McdSpaceUpdat eModel () was called on it. McdModel Updat e() , which updates relative transforms and
other data, will also not be called on a frozen model. It is an error to call McdSpaceUpdat eModel () on a
model for which McdSpacel sFrozen() returns true.

Note that McdSpaceFr eezeModel () does notimply a call to McdSpaceUpdat eModel () . If a collision
model transform has changed since the last changes block (see below) or has just been inserted, and you
wish to freeze the model in the configuration corresponding to its new transform value, be sure to call
McdSpaceUpdat eMbdel () beforehand. The frozen status is also used for optimization opportunities by the
Mst Bri dge component.
Similarly, to unfreeze a model call

MeBool MEAPI McdSpaceUnfreezeModel (McdModel I D cm)
and to check the status of a model

MeBool MEAPI McdSpaceModel | sFrozen  (McdModel 1D cm

Change Blocks

Change blocks are a mechanism to circumscribe changes to McdSpace by allowing specific changes to
occur only between a pair of functions. There are two types of operations on McdSpace objects: state-query
and state-modification. State-query functions can only be used when the state is well-defined, i.e. not in the
process of being modified. Once modifications to the state begin to be applied (signalled by a call to
McdSpaceBegi nChanges() ), the original state is no longer available for query. When the set of
modifications have been completed, (indicated by McdSpaceEndChanges() ) the new state is properly
defined and ready to be queried again.

voi d MEAPI McdSpaceBegi nChanges(MdSpacel D space)
indicates that a new set of state-modification operations will be applied to space, and
voi d MEAPI McdSpaceEndChanges(McdSpacel D space)

indicates that no more state-modification operations will be applied to space, i.e. the end of the changes
block.

i nt MEAPI McdSpacel sChangi ng( McdSpacel D space)

can be used to determine which mode is currently in effect, either inside (returns a non zero positive int) or

outside (zero) a changes block. It is an error to call McdSpaceBegi nChanges() inside the block, or to call
McdSpaceEndChanges() outside the block. See the tables below for a complete list of restrictions on the

use of McdSpace functions.

McdSpace functions applicable only inside the changes block: (i.e. when McdSpacel sChangi ng() returns
a non zero positive int):
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Functions Valid Only Inside Change Blocks

McdSpacel nsert Model ()

McdSpacel nsert Model Wt hCul |'i ng()

McdSpaceRenoveModel ()

McdSpaceUpdat eModel ()

McdSpaceUpdat eModel s()

McdSpaceEnabl ePai r ()

McdSpaceDi sabl ePai r ()

McdSpaceSet Model Cul |'i ngPar anet er s()

McdSpaceEndChanges()

McdSpace functions applicable only outside the changes block: (i.e. when McdSpacel sChangi ng()
returns zero):

Functions Valid Only Outside Change Blocks .
McdSpaceGet Pai rs()

McdSpaceGet Li neSegl nt er secti ons()

McdSpaceGet Li neSegFi rstintersection()

McdSpaceSet AABBFn( )

McdSpaceBegi nChanges()

All other McdSpace functions can be used regardless of the value of McdSpacel sChangi ng() . These are:

Functions Valid Anywhere

McdSpaceFr eezeModel ()

McdSpaceUnf r eezeModel ()

McdSpacel sChangi ng()

McdSpaceModel | sFrozen()

McdSpacePai r | sEnabl ed()

McdSpaceGet Model Count ()

McdSpaceModel | t er at or Begi n()

McdSpaceGet Model ()

McdSpaceSet User Dat a()

McdSpaceGet User Dat a()
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Updating The Models

Each time objects included in the collision space are moved or rotated (their TMs have been modified), the
collision space must be updated by calling

voi d MEAPI McdSpaceUpdat eAl | ( McdSpacel D space )
to update nearby pair lists according to the latest object transform. Similarly we can update a single model
voi d MEAPI McdSpaceUpdat eMbdel ( McdModel I D col | Mbdel )

which only updates the bounding volume in space associated with col | Model . This can only be called
when McdSpacel sChangi ng() is true, and is also called implicitly via McdSpaceUpdat eAl | ().

If a model is not updated, proximities involving it will continue to be reported, but they will be based upon the
bounding volume computed the last time McdSpaceUpdat eModel () was called, which may no longer be
correct.

If it is known that the bounding volume properties are not changing, then consider using
McdSpaceFr eezeModel () in combination with McdSpaceUpdat eAl | ().

The models can be frozen and unfrozen depending on the kind of behavior required. The frozen McdModel ’s
are models related to static objects, such as walls and floors, that should not normally move when interacting
with other smaller and lighter objects.

Freezing models is a way not to waste computing resources by testing for proximity, collision and then
generating useless contacts between pairs of static models. For example, a ground plane is frozen, since it
will not be moved by collisions with other objects:

McdSpaceUpdat eMbdel (groundCM ;

McdSpaceFr eezeMbdel (groundCM ;
Note that the ground collision model was updated before being frozen. This is to make sure that the collision
space is aware of the position of its bounding volume relative to other unfrozen models that may interact with
it.

There is a difference between freezing a model and not updating it: In the latter case, pairs will continue to be
reported, even if both models are not being updated; in the former, pairs in which both models are frozen are
not reported. For additional details about the freeze feature, please refer to ‘Static Models’ earlier in this
chapter.

Testing for Collisions

When a pair of McdMbdel objects are first detected to be in close proximity to each other, a McdModel Pai r
object is assigned to that pair.

That same McdMbdel Pai r object will be re-used to refer to the same pair in subsequent queries, until the
pair of models are no longer in close proximity to each other. After that point, the McdModel Pai r object
becomes invalid, and is reused by McdSpace to track other new proximities as they are detected.

All potentially colliding pairs of collision models, as determined by McdSpace, are stored in a
McdMbdel Pai r Cont ai ner structure. This structure is created with,

McdModel Pai r Cont ai ner* MEAPI McdMbdel Pai r Cont ai ner Create (int size)
that creates a Model Pai r Cont ai ner large enough to hold si ze model pairs.

Inside the McdMbdel Pai r Cont ai ner structure, there is an array containing the hello, staying and goodbye
pairs. To reiterate:

» Hello pairs are McdModel pairs that McdSpace identifies as being in close proximity to each other, but
that were not in close proximity after the previous call to McdSpaceUpdat eAl | ().

» Staying pairs are McdMbdel pairs that McdSpace identifies as being in close proximity to each other,
and were also in close proximity after the previous call to McdSpaceUpdat eAl | ().

e Goodbye pairs are McdModel pairs that McdSpace had identified as being in close proximity after the
previous call to McdSpaceUpdat e( ), but are no longer in close proximity after the current call to
McdSpaceUpdat eAl | ().

For obvious reasons, the Hello and Goodbye pairs are often called transient pairs.
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Here is a diagram showing the relationship between the pairs:
Staying

no longer nearby
(or disabled)

Hello

(non-disabled) pair newly,
in close proximity

In order to retrieve a list of one type of colliding pair, an iterator is needed. This is an index pointing to the
beginning of the sub-array of the desired type. First declare an iterator variable of the type
McdSpacePai r 1t er at or then initialize the iterator variable for the collision space by calling
voi d MEAPI McdSpacePairlteratorBegin ( MdSpacel D col | Space,
McdSpacePairlterator *iter )
The variable iter is not valid until this function is called. This must be called before using McdSpaceGet Pai r s, and
after McdSpaceUpdateAll is called.

Then to retrieve successive sub-arrays of McdMbdel Pai r use

int MEAPI McdSpaceCet Pairs ( McdSpacel D space,
McdSpacePairlterator* iter,
McdModel Pai r Cont ai ner* pai r Cont ai ner )
to get all pairs of McdMbdel objects in space that are in close proximity to each other and put them in
pai r Cont ai ner. This can only be called outside of the changes block, i.e. when
McdSpacel sChangi ng() is false. The return value indicates overflow condition (call again to get remaining
pairs).

The function McdSpaceGet Pai r s() gets all pair-events since the last call to McdSpaceUpdat eAl | (). By
default, this includes goodbye events due to models being removed from the McdSpace via
McdSpaceRenoveModel (). Close proximity is determined by a conservative bounding volume for each
model, and does not necessarily indicate contact or penetration between the two models.

The McdMbdel Pai r Cont ai ner structure filled in by McdSpaceGet Pai r s() identifies these states and
transitions by holding three distinct lists ( hello, staying and goodbye) of McdMbdel Pai r objects. Over a
sequence of time-steps, each McdMbdel Pai r goes through the same life cycle sequence:

e Itfirst appears as a hello pair.
e Itreappears zero, one or multiple times as a staying pair
* When no longer in close proximity, last appears as a goodbye pair.

In the step after that, the pair is invalidated and ready for reuse. This setup guarantees two key properties
that enable efficient management of collision response:

< the identity of McdMbdel Pai r objects is preserved across successive time-steps.
« every hello event will eventually be matched by a goodbye event.

Note that goodbye and hello pairs share the same array block. In the case of overflow, the goodbye pairs are
filled first and should be processed first, because it will free up memory further down the control chain. After
goodbye is filled, hello and staying are filled independently.

Below is a typical loop for this process. Note that the loop begins with a McdSpaceEndChanges() function,
and ends with a McdSpaceBegi nChanges() function. This means that the operation of retrieving pairs of
models and testing them for intersection must occur outside of the change block.

To handle collisions every simulation step, in the main program loop do something like:

MeBool pairOverfl ow,
McdMbdel Pai r Cont ai ner* pairs;

/* Move the object in the simulation */
move() ;
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/* end the change bl ock so we can handl e collisions */
McdSpaceEndChanges(space);

McdSpacePairlterator spacelter;

/* Initialise iterator */

McdSpacePai r |t er at or Begi n(space, &spacelter);

do {
/* Loop through the nodel pairs, handling each pair */
McdMbdel Pai r Cont ai ner Reset (pairs);
pai r Overfl ow = McdSpaceGet Pai rs(space, &spacelter, pairs);
/* Handl e goodbye pairs */
McdgoodbyeEach(pairs);
/* Handle hello pairs */
Mcdhel | oEach( pairs);
/* Handl e collision */
handl eCol | i si on(pairs);
} whil e(pairOverflow;

/* Start the change bl ock again */

McdSpaceBegi nChanges(space) ;
The nmove() subroutine, that updates each collision model position, is located inside the changes block.
The change block indicates a new step in the life-cycle of McdSpace pair-events: goodbye pairs reported in
the previous call to McdSpaceCet Pai r s() are no longer valid after McdSpaceBegi nChanges() , and will
not appear in the next call to McdSpaceCet Pai rs() .

McdHel | o() must be called on a pair before using it in any queries, such as Mcdl nt er sect () or

McdSaf eTi ne() . It prepares McdSpace by allocating internal cached data, preprocessing some
information for use by Mcdl nt er sect () or McdSaf eTi ne(), or selecting the appropriate algorithm based
on some of the pair's McdRequest values. After McdHel | o() has been called, McdMbdel Pai r Reset ()
and McdModel Pai r Set Request Pt r () calls are not allowed on this pair until McdGoodbye() is called.
Otherwise, undefined behavior may result.

Conversely, a McdGoodbye() call should be made on any goodbye pairs obtained from McdSpace for
which McdHel | o() has been previously called, to inform McdSpace that no more queries will be performed
on these pairs. This will free up any internal data associated with any of these pairs, if applicable. As a
consequence, the Mcdl nt er sect () and McdSaf eTi me() queries could no longer be called on this pair.

Note that it is important to process all the goodbye and hello pairs by calling the appropriate functions (or
using Mst utility functions that do this) after an McdSpaceEndChanges call and before an

McdSpaceBegi nChanges call. Since the hello and goodbye pairs are transient, these hello and goodbye
events will be missed and either pairs will not be correctly initialized (McdHel | 0) or memory will not be freed
(McdGoodbye) causing undefined behavior.

voi d MEAPI McdHel | oEach ( McdModel Pai rContai ner* pairs )
and

voi d MEAPI McdGoodbyeEach ( MdModel Pai r Contai ner* pairs )

can be called instead. This will accomplish the same thing as McdHel | o() or McdGoodbye(), but for a
whole McdModel Pai r Cont ai ner structure at once.

Now that we know which pairs of collision models are near each other and possibly colliding (hello and
staying), we must check if there is an actual collision between each of them. To test for potential collisions
between a pair of collision models call

MeBool MEAPI Mcdl ntersect ( McdModel Pair *pair, MdlntersectResult *result,

MeReal tine )

This will find an appropriate algorithm for the given pair of collision models, and compute the desired
intersection data, given an McdMbdel Pai r structure of nearby collision models and a
Mcdl nt esecti onResul t structure that will hold all relevant collision information, including newly
generated McdCont act objects for that pair. The return value is 1 if the proper collision function was
available, 0 otherwise. The members of the Mcdl nt er sect Resul t structure are given in the table
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Field Name Usage

McdMbdel | D modell one of the collision models.

McdMbdel | D model2 the other collision model.

McdCont act * contacts | array of contacts to be filled.

i nt maxContactCount size of array.

i nt contactCount number of contacts returned in array.
i nt touch 1 if objects are in contact, O otherwise.
MeVect or 3 normal representative normal of the set of contacts.

An array of McdCont act objects and its length must be provided before calling Mcdl nt er sect () :
Mcdl nteracti onResult result;

/* Set the maxi mum nunber of contacts to be returned */
resul t. cont act MaxCount = 10;
result.contacts = contacts;

/* Get a pair of nodels */
McdModel Pair1 D pair = pairs->array[i];

/* Test for intersection */
Mcdl nt ersect (pair, &result);

Cleaning Up

When the simulation is completed, Mst Uni ver seDest r oy can be used to destroy all the Mcd variables and
structures.

A model and its related geometry cannot be destroyed while the model is still in a space. Models must be
removed from space using
MeBool MEAPI McdSpaceRenoveModel ( McdMvbdel I D col | Model )

function before being destroyed. This takes the model out of its space and returns 1 if successful, O if not.
Any associated staying or hello pairs in that space will become goodbye pairs. This can only be called when
McdSpacel sChangi ng() is true.

To remove model(s) from space then a procedure such as (in pseudo-code)

McdSpaceBegi nChanges( space) [ if not in a change bl ock ]
McdSpaceRenovehMbdel (nodel ) [ repeat as needed ]
McdSpaceEndChanges( space)

McdSpaceGet Transi ti ons(space) [ must be done out of change bl ock otherw se

currently no renoved pairs output ]

handl e all transitions.
i .e. goodbye pairs from space involving the renoved nodel (s).
The nodel must be valid, including a valid geometry up to this point.

]

McdGeornet ryDest r oy( McdMbdel Get Geonetry(nodel )) [ optional - nmay still be
bei ng used by ot her nodels ]
McdModel Dest r oy ( nodel )

can be employed.
All collision models that reference a particular geometry must be destroyed before the geometry itself is
destroyed. This is because geometries are reference counted i.e. every persistent reference (in a collision

aggregate or a collision model) to a geometry increases the reference count by 1 while that model exists. If
you destroy a geometry with non-zero reference count, you get a warning in debug builds.

To remove a geometry use
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voi d MEAPI McdCeonetryDestroy ( MdGeonetryl D geonetry )
The geon®et ry is no longer valid after this call.
To remove a collision space use
voi d MEAPI McdSpaceDestr oy ( McdSpacel D space )
This deletes a McdSpace object performing memory deallocation.
voi d MEAPI McdFramewor kDest r oyAl | Model sAndGeonet ri es( McdFramewor kil D )
destroys all models and geometries allocated by a framework. Finally free up the memory used by the
framework by calling
void MEAPI McdTerm ( McdFrameworkl D )

to shut down the Mcd framework. This frees all memory allocated in Mcdl ni t (), and any memory that may
have been allocated by any Regi st er Type() or Regi sterl nteraction() calls.
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Introduction

The Karma Bridge provides a way of passing information between Karma Dynamics and Collision when both
are used.

The Karma Bridge resides in the Mst library (hereafter called Mst) which also contains utilities for simplifying
the simultaneous use of Karma Collision and Dynamics. Mst provides an API that is a bridge between Karma
Dynamics (Mdt libraries) and Karma Collision (Mcd libraries). A schematic of the Mst integrated architecture
is shown below.

/ \ Temporary Data

Collision

R Persistent Structures
Geometrical

information about
colliding pairs of

]
del Open Source
modets Q Function

c .
MstBri i
g st dgeUpdate McdSpaceGetPairs Closed Source
© Contacts Function
é’ MstHandleTransitions McdModelPair
o Container o .
o f—>0 f" happens before ‘g
< : MstHandleCollisions
MstMaterialTable .
McdIntersection
f—pa ‘f” writes data to ‘a’
Dynamics information
about forces needed to
prevent penetration f 4—a ‘f’ reads data from ‘a’

Dynamics

4P 2 ‘f’ reads and writes
\_) data to ‘a’

Mst ensures that all necessary operations are carried out at the right times, and that the memory is efficiently
managed. These operations include:

» Updating the transformation matrix of each collision model and its corresponding dynamics body.
» Obtaining data about intersections and contact points for each collision event.
* Preparing and sending contact data to Karma Dynamics.

» Ensuring that the dynamic properties of each contact are set to the values appropriate for the given pair
of models.

Mst automates all of these processes, and provides high-level control over each aspect of its activity. Use of
the Mst library ensures that combined use of dynamics and collision is efficient and takes full advantage of
the features available in both, providing useful functions for creating and simulating objects in both. An

Vst Uni ver se contains an McdSpace, an Mit Wr | d, an Mst Bri dge, and some buffers for moving
contacts between Mcd and Mdt. The function Mst Uni ver seCr eat e creates these in one function.

A collision McdModel structure is created for each object. For non static collision models a dynamic
Mt Body is associated with it. No dynamic body is associated with static collision models.

Mst contains functions for creating these together (for convenience), and for associating them when they
have been created with the Mdt and Mcd APIs, using McdMbdel Set Body. The mass and inertia tensor of an
Mdt Body can be automatically set to a sensible default using the collision geometry and a density.

Mst Uni ver seSt ep calls the collision farfield and nearfield tests, and steps the dynamics.
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Mst contains functions that coordinate collision and dynamics. One of the most used is the Mst Uni ver se

structure (see Mst Types. h).

Mst Uni ver se Members

Description

Mit Wor | dI D worl d

Handle to the Dynamics world

McdFr anewor kl D frane

Handle to the Collision framework

McdSpacel D space

Handle to the Collision farfield

Mst Bri dgel D bri dge

Handle to the Karma bridge

Mst Uni ver seSi zes si zes

Structure containing information about
the size of the universe

Mst Uni ver seSi zes contains information that allows Karma to allocate memory to contain all the physics
components in this Mst Uni ver se. An Mst Uni ver seDef aul t Si zes structure contains default values for a
typical universe. You should adjust these to suit your application. The Mst Uni ver seDef aul t Si zes are

shown below.

Mst Uni ver seSi zes Member Default | Description
Value

dynani cBodi esMaxCount 100 Maximum number of dynamic bodies allowed.

dynani cConst r ai nt sMaxCount 500 Maximum number of dynamic constraints
(joints & contacts) allowed.

col l'i si onUser Geonet r yTypesMaxCount | O Maximum number of user collision geometry
types allowed.

col I'i si onMbdel sMaxCount 100 Maximum number of collision models allowed.

col l'i si onPai r sMaxCount 500 Maximum number of simultaneously
overlapping models allowed.

col I'i si onCGeonetryl nst ancesMaxCount | 100 The number of additional geometries,
geometries not directly associated with a
model. Used when implementing aggregates.

mat er i al sMaxCount 10 Maximum number of materials allowed which
must be at least 1. Materials are used to define
the interaction between two bodies, the
parameters are set on a per material pair
basis.

| engt hScal e 1 Length of a medium-sized object

massScale 1 Mass of a medium-sized object

To set up NBALLS bouncing freely on a ground plane, include Mst, declare variables and fill out constants

and structures:

#i ncl ude "Mst. h"

Mst Uni ver seSi zes si zes;

/* Set sone default sizes */
sizes = Mst Uni verseDefaul tSi zes;

/* One collision nodel
si zes. col |i si onMbdel sMaxCount =

for each ball,

and one for the ground plane */
NBALLS + 1;
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/* In an extrene case all the balls will be touching another ball or the plane */
si zes. col li si onPai rsMaxCount = NBALLS * NBALLS;

/* One dynam cs body for each balls */

si zes. dynam cBodi esMaxCount = NBALLS;

/* In an extrene case all the balls will have six contacts */
si zes. dynani cConstrai nt sMaxCount = NBALLS * 6;

/* We have one material for the balls and one for the ground plane */
si zes. materi al sMaxCount = 2;

/* W are not using aggregates so there are no 'unused geonetries */
si zes.col lisionCGeonetryl nstancesMaxCount = 0;
si zes. col lisionUser Geonet ryTypesMaxCount = McdPrimtivesGet TypeCount ();

/* Now use the size structure to create the Universe */
Mst Uni ver seCr eat e( &si zes) ;

Now that the Mst Uni ver seSi zes structure contains all the important quantities used to manage the
Mst Uni ver se, this can be passed to Mst Uni ver seCr eat e, which will return an ID to our Mst Uni ver se.

Fitting Out the Universe

The universe can be populated with dynamic and static objects. Static objects are created with

Mst Fi xedMbdel Cr eat e, which takes a collision geometry and a transformation matrix containing the static
object’s position and orientation. The collision model is created, positioned and inserted into the collision
space, and then updated and frozen in place.

When creating a collision model and a dynamics body, they need to be attached such that collision contacts
created during Mst Bri dgeUpdat eCont act are associated with the correct dynamics body. To do this use
McdModel Set Body to associate the collision and dynamics bodies.

Dynamics bodies contain no information about their spatial extents, except for mass distribution. If the body
has an associated collision model, then this information can be used to calculate approximate values for the
mass and inertial tensor of the dynamics body. To do this call Mst Aut 0oSet MassPr operti es providing
collision geometry and average body density as parameters.

Mst Model AndBodyCr eat e creates and associates a McdModel with a Mit Body. The McdGeonetry
and density that are provided are used to calculate sensible values for the mass and inertia tensor of this
body. The model is automatically inserted into the universe collision space. This effectively calls
McdModel Set Body and Mst Aut oSet MassProperti es.

Resetting

If a collision model has a dynamic body associated with it, the position can be reset to the world origin, the
orientation set to default and the velocity set to zero with McdMbdel Dynam csReset .

Setting the Universe in Motion

voi d MEAPI Mst Uni verseSt ep(const Mt Universel D u, const MeReal stepSize)
evolves the universe by
e updating the collision space.
» passing the generated contact to the dynamics world via the bridge.
» evolving the world for a time-step by executing the following code.

McdSpaceUpdat eAl | (u- >space) ;
Mst Bri dgeUpdat eCont act s(u->bri dge, u->space, u->world);
Mt Wor | dSt ep(u->wor | d, st epSi ze) ;
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Cleaning Up
Before closing the application, free up the memory used by the structures and objects using
Mst Fi xedMbdel Dest r oy, Mst Model AndBodyDest r oy, and Mst Uni ver seDest r oy.

Mst Uni ver seDest r oy not only de-allocates memory and destroys a Mst Uni ver se simulation container,
but will also destroy

- all Mdt Bodi es and all Mit Const r ai nt s regardless of whether they are enabled or disabled.
« all McdModel s that have been created, regardless of which McdSpace they are in.
e the Mst Bri dge.
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Building a Bridge

Each newly created universe contains what is referred to as a bridge. An Mst Bri dge object is responsible
for all operations and communication between Karma collision and dynamics and is used during Mit St ep to
pass contact geometry information from collision to dynamics.

To use collision and dynamics together when not using the Mst Uni ver se container, a bridge must be
created from scratch using Mst Bri dgeCr eat e.

Each Mit Body receives a Mst Mat er i al | Didentifier that acts like an index in a matrix of contact
parameters and callback functions, also called the material table. As soon as a contact is created, the

Mst Mat er i al | D of both bodies in contact is used to retrieve the proper Mit Cont act Par ans structure and
the name of the three callback functions it is using. The Mit Cont act Par ans interface can then be used to
modify friction, restitution etc. for a pair of materials.

For example, if a rubber ball with a Mst Mat eri al | Drubber had fallen on a wooden floor with a

Mst Mat eri al | D wood, then the newly created contact would have used the Mit Cont act Par ans
structure and the appropriate callback functions located at (wood, rubber) inthe material table. The
Mst Bri dgeGet Newivat eri al function creates a new Mst Mat eri al | D.

When just using the single default material, i.e. there are no user defined materials, the material table
contains one material entry. The default Mst Mat er i al | D, returned by the macro function

Mst Bri dgeGet Def aul t Mat eri al is 0. The three default contact callback functions are valid for the
default material. This is why the value of mat er i al sMaxCount must be at least 1 in the

Mst Uni ver seSi zes structure.

An Mst Mat eri al | Didentifier needs to be attached to every McdMbdel by using the
McdMbdel Set Mat eri al mutator function. The McdMbdel Get Mat eri al accessor function returns the
Mst Mat eri al | Didentifier of a McdMbdel .

So if we wished to make two materials, say one for a ball object and one for the ground plane, we could use
code such as this to set the restitution to 1.0 (very bouncy).

Mst Material I D ball Material,fl oorMaterial;
Mt Cont act Par ansl D p;

bal | Mat eri al
fl oorMateri al

= Mst Bri dgeGet Newivat eri al (Mst Uni ver seGet Bri dge(uni verse));
= Mst Bri dgeGet Newivat eri al ( Mst Uni ver seGet Bri dge(uni verse));
/* Get the contact parans */
p = MstBridgeCet Cont act Par ans( Mst Uni ver seGet Bri dge(uni ver se),

bal | Material, floorMaterial);
/* Set the restitution for this pair of materials */
Mt Cont act Par ansSet Resti tuti on(p, (MeReal ) 1. 0);

s to the appropriate nodels */
|, ball\/aterial);
or,floorMaterial);

/* Now set the materi al
McdMbdel Set Mat eri al (bal
McdModel Set Material (flo

Callback Functions

A callback function is a user defined function that is automatically called when a predetermined event takes
place. Callback functions are designed to return a specific type of variable and to take specific arguments.

A callback provides users with a means of modifying a given structure before it is used. They provide control
over McdCont act s before they are converted to Mit Cont act s. Callbacks can be used for many
applications:

» adding a sound everytime there is a collision, such as a ricochet noise as a bullet rebounds of a wall.

» dynamically altering properties of the generated contacts, such as setting the slip of a car wheel to
depend on its rotation speed.
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There are three different callback functions that can be used. The functions Mst Bri dgeSet * CB and

Mt Bri dgeGet * CB assign and retrieve these. The asterisk denotes the callback type, namely | nt er sect
Per Cont act or Per Pai r . To set or retrieve the callback the function should be passed the Mat eri al | Ds
that correspond to the interaction that are to be processed in the callback. The callbacks themselves must
return a MeBool to indicate whether the contact should be kept and acted upon.

Intersect

Set the optional per-intersection user callback for the given pair of materials. This will be executed once for
each pair of colliding models with the given materials, with the Mcdl nt er sect Resul t and the set of
collision contacts. It allows control over McdCont act s (geometrical contact information) before they are
converted to Mit Cont act s (dynamic contact information including surface properties).

To obtain the whole set of collision contacts in one go use the intersect callback. The contacts can then be
culled by the developer.

PerContact

Set the optional per-contact user callback for the given pair of materials. This will be executed once for each
contact between models with the given materials, with the Mcdl nt er sect Resul t and the Mcd and Mdt
contacts. It allows control of parameters in the dynamics contact based on data contained in the collision
contact. If the callback returns 0, the Mit Cont act will be deleted.

The per-contact callback should be used to modify the properties of a dynamic contact using information
from the collision contact that created it. The per-contact callback is slightly less efficient to use than either of
the other two, because it is called many times for each intersection rather than just once.

PerPair

Set the optional per-pair user callback for the given pair of materials. This will be executed once for each pair
of colliding models with the given materials, with the Mcdl nt er sect Resul t and the set of dynamic
contacts. It allows, for example, further culling of dynamics contacts based on the entire set of contact
values. If the callback returns 0, the set of contacts will be deleted.

The per-pair callback is used to operate globally on the set of dynamics contacts. This would be used to add
an extra contact between two objects.

As an example we could create a callback that would allow a ball to pass through a wall if it is travelling fast
enough, and we make it slow down slightly to simulate the resistance as it passes through the wall. First, set
the callback using the wall and ball materials to tell Karma which interaction is of interest.

/* set the call back between the wall and ball material */
Vst Bri dgeSet Per Pai r CB(uni ver se->bri dge, mat_Wall, mat_Ball, \Wall Colli sionCB);

Define the callback to process the collision

MeBool MEAPI Wl | Col |'i si onCB(Mcdl ntersectResult* ¢, MtContact G oupl D cg){
MeVect or 3 vel ;
Mit Bodyl D body

/* First find which of the nodels is the ball */
i f (McdModel Get Mat eri al (c->pai r->npdel 1) ==nat _Bal | )

bal | =McdModel Get Body( c- >pai r - >nodel 1) ;
el se
bal | =McdModel Get Body( c- >pai r - >nodel 2) ;

}
Mt BodyCet Li near Vel oci ty(ball, vel);
i f (MeVector 3Magni t ude(vel ) >t hresh){

/* Body is going fast enough to pass through, so slow the ball down */
MeVect or 3Scal e(vel , (MeReal ) 0. 5) ;

Mt Body Set Li near Vel oci t y( body, vel );

/* Return O to delete this contact */

return O;

el se
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/* return 1 to maintain this contact and nake the ball bounce off */
return 1;

}
}

Note that there are default callbacks setup in Mst Uni ver seCr eat e when it calls Mst Set Wr | dHandl er s
that ensure that when a dynamic body stops moving its collision model is frozen, and when an interaction
causes it to start moving again, its collision model is unfrozen. To coordinate collision and dynamics via the
bridge when not using an Mst Uni ver se, call Mst Set Wr | dHandl er s.

A bridge created outside of an Mst Uni ver se structure will need to be destroyed explicitly with
Vst Bri dgeDest r oy.
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Creating Good Simulations with Karma

After mastering the basic usage of Karma there are several issues that should be borne in mind so that well-
behaved, efficient and reliable simulations can be constructed. These are discussed in this chapter.
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Points to Remember When Using Karma

The following list may prove useful as a troubleshooting guide. Each point is further explained below.

1 Always use the check build when developing.

2 The most common reason for a ‘crash' is that the pool of bodies or constraints in an MdtWorld is not big
enough.

3 Care must be taken when setting a range of certain object parameters, such as mass and size, so as
not to lose accuracy.

If large masses are needed, or large forces used, the parameter epsilon may need to be decreased.
5 Applying forces or torques to bodies will not slow down a simulation.

6 Adding forces that change rapidly, for example springs, between time steps can cause simulations to
gain energy and become unstable. Use constraints instead.

7 Ensure that an object’s inertia tensor corresponds to its mass and collision size, and hence is sensible
for the torque applied to it.

8 To speed up a simulation use small, separate partitions.
A body can be moved by
- applying a force to it.
- setting its velocity.
- setting its position.

Always use a force where possible. While the velocity or position can be set directly, care should be
taken when doing this.

10 The visualized physical object that is created is composed of SEPARATE dynamic, collision and
graphics objects.

11 Use a single dynamic body. Do not try to fix dynamic bodies rigidly together.

12 Mass distribution, Moment of Inertia, Inertia Tensor and Mass Matrix refer to the same property. Set it
using MdtBodySetlnertiaTensor().

13 Use the fast spin axis option when hinging two objects together that will rotate at high speeds.
14 Avoid Over-Determinancy.

15 Set contact softness to prevent contact jitter.

16 Use joint limits rather than contacts.

17 Position and enable bodies before assigning them to a joint. Then set the joint position and enable the
joint.

Further details:

1  Always use the check build when developing.

The check / debug builds provide lots of useful warnings and should be used. Note that MathEngine does not
provide debug builds itself. Developers should create a debug build for publicly released libraries.

2  Themost common reason for a'crash' is that the pool of bodies or constraints in an MdtWorld is
not big enough.

If your simulation does crash, check that you are using the check / debug library and look for any warnings.
The most common problem (the most common reason for a ‘crash’) is that the memory pool assigned to hold
the body and constraint information in the MdtWorld is not big enough. You should increase this. Only use
the release libraries to get a measure of performance of a working check / debug build.

3  Care must be taken when setting a range of certain object parameters, such as mass and size,
so as not to lose accuracy.

For stable efficient simulations, it is sensible to keep lengths and masses in a relatively small range around
unity. How critical this is depends on the precision that is being used. Because one of the main requirements
for Karma for the entertainment market is that it be fast, single precision float is used, hence it is sensible to
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keep all length and mass numbers in the range of 0.01 through 100, for example. For higher precision, a
much wider range is acceptable. This will help ensure that numerical error and inaccuracy do not become too
much of a problem.

Note that problems can occur if you have a large range of values for certain object properties. For example,
certain ratios relating to mass must be close to one. Here are some guides to world construction that should
be followed:

¢ Largest mass to smallest mass ratio should ideally not exceed 100.

e Itis sensible that the velocity of an object is such that the distance it moves in a time step is less than
the object size. The reason for this is that collisions are more easily detected.

The angular velocity should be such that the angle swept out in a time step does not exceed 60 degrees. The
exceptions to this are in the carwheel joint that was specifically designed for high-speed rotation, or for
bodies where the fast rotation axis (keaBody.fastSpinAxis) has been set. This is because floating-point is
most accurate for values in the middle of its range. In decimal equivalent, the working range is between
about 10e-6 & 10e+6. Adding and subtracting values whose exponents differ by more than this results in
errors in the mantissa. Similarly multiplying 2 numbers with large exponents and dividing numbers with small
exponents causes problems in that the exponent suffers overflow and underflow respectively.

The critical point is that mass scales as the third power of object size and moments of inertia scale as the 5th
power. E.g. A cube has mass = (density)x(volume) = (density)x(length cubed). This cube has inertia =
(mass)x(length squared) where mass is given above. If you have 2 objects, one of size 0.1, the other of size
10, a difference factor of a mere 100, the mass difference is of the order 103/0.13 = 10, and the inertia
difference = 10°/0.1° = 1010, This demonstrates how accuracy can be lost.

Consider an articulated system consisting of heavy and light objects. The heavy objects can transfer their
energy to the light bodies causing them to move quickly because of conservation of momentum. Instabilities
will occur if bodies move faster than they can be reasonably simulated. This problem can be prevented by
ensuring that the ratio of large to small masses in the system is not too high. For example, a ratio of 100:1 is
a reasonable single precision maximum in many situations.

4  If large masses are needed, or large forces used, the parameter epsilon may need to be
decreased.

If you use larger masses, you may need to decrease 'epsilon’ (using MdtWorldSetEpsilon). Epsilon is a
‘global constraint softness' and directly affects the constraint solution. If the forces in your simulation are stiff,
you will need to make constraints (contacts, joints) 'harder".

For large or small epsilon, the maths describing the system will be solved, but the way the solution is arrived
at results in different visual behavior of the system.

As epsilon decreases it takes longer to home in on a mathematical solution within the required bounds. As an
example, consider a large mass colliding with the ground. The contact is modelled by a spring. Epsilon
relates to the stiffness of the spring. For more realistic behavior a stiff spring is needed i.e. small epsilon.
However, it will take longer to arrive at a solution within the bound specified. You might get a warning
message saying that the number of LCP (don’t worry about LCP here) cycles have been exceeded. This
means that while the solution is almost certainly going to be good enough for your application it might not
have fallen into the required range within the number of LCP cycles specified.

To decrease the time (i.e. number of LCP cycles) to find a solution of the given accuracy you should increase
epsilon. However, this makes it more difficult to model systems that require stiff springs - e.g. the large mass
system described above. A large mass object in collision with the ground will show ‘springiness’ in the
contact. Hence the term ‘global constraint softness' that is used to describe epsilon physically.

Ideally you should set the largest epsilon possible so that your system behaves properly as visually
observed. We recommend that you tweak with epsilon. While epsilon is not limited, a sensible working range
is between 10> and 0.1.

5 Applying forces or torques to bodies will not slow down a simulation.
and

6 Adding forces that change rapidly, for example springs, between time steps can cause
simulations to gain energy and become unstable. Use constraints instead.
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Applying forces or torques to bodies will not slow down your simulation. However, adding forces that change
rapidly between time steps (e.g. springs) can cause your simulation to gain energy and become unstable.
You should use a constraint for this instead.

7  Ensurethat an object’s inertia tensor

corresponds to its mass and collision Version 1.x of Karma Dynamics internally
size, and hence is sensible for the torque overrides the inertia tensor set by the user with a
applied to it. uniform tensor that is a multiple of the identity matrix.
e This design choice has been made to reduce a number
Ensure that an object’s inertia tensor of stability problems that arise due to momentum
corresponds to its mass and collision size. transfer from high to low inertia axis. These can
Even if itis a crude approximation such as produce high angular velocities, especially during

that of a sphere bounding your object, this will collisions, and make it harder to construct robust
(I IR INECEICIEREG LR CEWYAJ e VAV GIEEN - Simulations: Karma 1.1:1 contains experimental code
small inertia tensor, this can cause jittering for non-spherical inertia tensors, although there may be
and odd behavior. This is because physically [SEIERNAEIEEIES A SRR R B R e
it would be like, for example, creating a deal with at the application level.

sphere with nearly all of its mass in the
center. It is easy to rotate this object because of its small inertia. If you apply even what appears to be a
sensible force (strictly a force that acts to rotate the object i.e. a torque) in comparison to the object size and
mass, the small inertia results in rapid rotation.

Objects having inertia tensors with components that are large on one axis and small on another axis are
inherently unstable. Long thin objects are susceptible to gaining rotational energy on the long axis, about
which the moment of inertia is low. This can lead to rotations that are difficult to simulate accurately. If an
object is rotating quickly about a particular axis then the fast spin axis (please refer to point 13 below) option
should be used.

8 To speed up a simulation use small, separate partitions.

The speed of simulation is, in the worst case, proportional to the number of constraints in a partition* cubed.
For example, a stack of 5 boxes can be 8 times faster than a stack of 10 boxes (103/53). Hence you can
speed up your simulation by using lots of small, separate partitions.

* A 'partition’ is a group of bodies connected by constraints. Constraints to the 'world' do not connect
partitions. So two boxes sat on the ground are two partitions, but two boxes in a stack are 1 partition.

9 A body can be moved by:
» applying a force to it.
» setting its velocity.
e setting its position.

Always use a force where possible. While the velocity or position can be set directly, care should be taken
when doing this.

When you want to reposition or move an object, there are three ways that you can do this using Karma. You
can set the object position directly, set the object velocity or apply a force to it. The preferential order for
doing this is wherever possible use forces, the next best option is to set the velocity, and finally repositioning
directly which will work but is not recommended. To think about this you should consider how objects move in
the real world. Leaving quantum behavior well alone, within the Newtonian framework - our perceived reality
- objects do not simply move instantly from one place to another (like setting position). Similarly, they don’t
suddenly develop a particular speed i.e. they are not stationary one instant and the next they are moving (like
setting velocity). Rather there is a smooth increase in the velocity and position changes gradually as a force
is applied. It is the same with the simulation software. While you can set position and velocity, you should use
forces wherever possible. Mathematically we say that the functions should be continuous i.e. there are no
sudden kinks or discontinuities that correspond to position or velocity being set rather than force. Setting
position results in bigger discontinuities than setting velocity, hence the reason for ‘preferring’ velocity to
position.

A problem from setting position directly is that an object may inadvertently be place inside another object. Or
if you reposition an object that is joined to another body or that is part of another structure.
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An example of a problem from setting velocity directly is that an object may unintentionally be directed at
high speed toward another object. Or if a velocity is given to an object attached to another or that is part of
another structure

However, please note that if your object is isolated and is being moved to a position not occupied by another
object, then setting position or velocity is okay. Likewise, you can do this as long as you take care of the
objects that the object you want to move is attached to. Hence, either detach it or move the entire structure
(partition).

10 Thevisualized physical object that is created is composed of SEPARATE dynamic, collision and
graphics objects.

No additional notes.
11 Use asingle dynamic body. Do not try to fix dynamic bodies rigidly together.

Do not try to fix dynamic bodies rigidly together, but rather use a single dynamic body. Fixing objects rigidly
together causes a large performance hit - relatively speaking, as the fixed joint is not necessary - on the
constraint solver. The constraint solver works out the physical properties of the state of the system as the
system evolves. A fixed joint constrains the six degrees of freedom (three linear and three rotational)
between two objects and as a result is the most computationally expensive constraint to deal with. You can
create aggregate structures by attaching a composite collision model and several graphic objects to a single
rigid body. The only knowledge that a dynamic body has about its extent is through its mass distribution. You
should set the mass matrix of your single dynamic body to something close to that of your perceived
structure consisting of multiple rigid dynamic bodies. The exception to this is when you need a more
accurate inertia tensor than the approximate one calculated by the solver - see point 7 above.

12 Mass distribution, Moment of Inertia, Inertia Tensor and Mass Matrix refer to the same property.
Set it using MdtBodySetlnertiaTensor().

No additional notes.
13 Use the fast spin axis option when hinging two objects together that will rotate at high speeds.

Every rigid body can have an optional fast spin axis specified, about which it rotates. If this is set, and it must
be done at each time step, it alters the way that the body's orientation is updated at the end of every time
step.

This alternative “fast spin” update is more accurate in the case where the body is spinning quickly around the
fast spin axis, and relatively slowly around the other axes. This is particularly useful in the case of a wheel on
a car, that may be rotating very quickly. Using the standard orientation update may result in a large error that
makes the wheel's hinge axis appear to bend.

14 Avoid Over-Determinancy.

A system is described as being over-determined if there are more joints and contacts than are actually
required to constrain the motion of the bodies in that system. Extra contacts result in an over-determined
system because one of them is redundant. Because there are more contacts, the solver requires extra time
to resolve the contact forces. However, this should not cause problems unless there are too many extra
contacts, or the system is over-constrained in a way that means there are no consistent solutions. Some
examples include:

* When simulating a box resting on a ground plane, three contact points between the box and the ground
are the minimum to constrain the box to rest on the plane. However, it may be advantageous to use four
contacts, since this may result in a system which is slightly more stable and will be automatically
disabled more quickly.

¢ A hinge joint removes five degrees of freedom (DOFs) between the two connected bodies. Imagine
modeling a hinge as two ball-and-socket joints spaced a little distance apart on the hinge axis. This
constrains the bodies in the correct way, i.e. the correct hinged motion is produced, but the two joints
together take away six DOFs (three each). This is one more than is necessary for a hinge.

In some circumstances, more contacts can be generated. Consider a box in a corner. Generally more
contacts are generated than are strictly necessary, but it can be hard for a physics simulator to recognise the
redundant contacts. When you view contact information as boxes are moved around on surfaces and
stacked on one another, contacts come on or off and often the number fluctuates as the system changes.
However, these reduce quickly as the system settles down and the solver works out the forces.

Creating Good Simulations with Karma « 87 °



MathEngine Karma User Guide

Ideally over-determinacy would never arise, because every rigid body system would be described optimally.
This is not so easy to achieve in practice - it can be difficult to tell whether a given system is, or is not, over-
determined.

Here are a few guidelines:

» Use the minimum number of constraints between objects that gives the correct behavior. Generally
speaking, the fewer the constraints, the faster the simulation. Finding this minimum involves a certain
amount of trial and error.

» Use the correct joint types for the required motion. E.g. don't use two ball-and-socket joints to model a
hinge.

« Don't have conflicting joints between the same bodies, i.e. don't use more than one joint to constrain the
motion of the bodies in the same way.

» Ifin doubt, increase epsi | on. This will always have the effect of reducing the over-determinacy of any
system.

15 Set contact softness to prevent contact jitter.

When two objects collide, there will be some initial inter-penetration. The amount of penetration depends on
how fast the two objects were going before they collided.

After collision, Kea's projection feature will push the objects apart to reduce the penetration to zero.
However, sometimes Kea will push the objects too far, and the contact will be broken. This can be a problem,
for example, when objects are resting on the ground. When the contact is broken, the object will “fall” a short
distance into the ground, the contact will be re-made and the object will be pushed out again. This process
can result in resting objects that jitter or twitch from time to time.

One solution is to set the softness option on the contact. This will cause two objects that are being forced
together to naturally inter-penetrate slightly, preventing contact breaking:

» SetkeaContact Opti onto keaCont act Opti onSoft.

* Use ndt Cont act Set Sof t ness() to set the degree of softness. A fairly small number, like 0.0001, is
usually suitable. A larger number will result in more natural penetration.

There is no efficiency loss in using soft contacts.
16 Use joint limits rather than contacts.

Hinge and prismatic joints can have their movement limited to prevent self-collision. Wherever possible, joint
limits should be used rather than contacts to control the movement of joints. Using a contact to prevent
movement of two objects connected by a joint, rather than joint limits, is more computationally costly. This is
because more contacts are generated and there is additional collision detection.

17 Position and enable bodies before assigning them to a joint. Then set the joint position and
enable the joint.

Positioning the joint and attaching the bodies in the wrong order can result in objects jumping around when a
simulation starts. To avoid this, set up and enable bodies before applying constraints.
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Karma Project Usage

The following section contains Q&A obtained in part from field experience gained by implementing Karma in
developer projects.

Dynamics

How do | attach a body to the world at a fixed point?
There are 2 options:

< Attaching a body to the world with a joint. For example, a ball and socket joint can be used to attach a
body to the world that is free to rotate.

« Fixing a body in space so that all 6 degrees of freedom (3 linear and 3 rotational) are constrained. This
is effectively fixing a dynamic body to the world so that it becomes part of the world.

To use a joint to attach a body to the world the body should first be positioned and enabled. Bodies need to
be positioned and enabled before being joined in Karma. A joint should be disabled before a joint body is
changed. The Karma Debug libraries will give a warning if a joint body is changed when a joint is enabled.

For an object fixed in space, a dynamic body is not required. The reason for this is that it is unnecessary and,
because the 6 degrees of freedom are constrained, the matrix that needs to be solved to work out object
positions and velocities in the world is unnecessarily complicated. For each extra constraint, one row is
added to the matrix. Use a collision (and render) model only and fix the collision model in space. Any
additional objects that need to be attached to this body should be jointed directly to the world if a joint is
needed, or their collision model used as with the first body.

Can | obtain forces from contacts to use for extra gameplay elements? E.g. such as the sound of
an impact or damage to an object.

You check at each time step to see if objects are in contact. The force that you need to check for damage in
joint can be obtained using:
voi d MEAPI Mt Constrai nt Get Force ( MitConstraintlD c,
unsi gned i nt bodyi ndex,
MeVector3 f )
This returns the force, in the world reference frame, applied to a body by constraint ¢ on the previous time
step.

To generate sounds between two objects colliding you first need to work out the forces from the contacts.
When two objects collide they generate a contact group. In the per pair callback, obtain the first contact by
using Mit BodyCet Fi r st Cont act function, and then Mit Body Get Next Cont act for the others until 0 is
returned. Use Mit Cont act Get For ce to obtain the collision force for each of the contacts.

I have dropped an object onto a surface, which works fine. However, when | apply an explicit force
to it nothing happens, except when another object touches it, sending it quickly off in a random
direction. What is happening?

What is happening is that the body has come to rest on the ground and been automatically disabled. When
the explicit force is applied it does not re-enable the body and what happens is that the force accumulates in
the system until the body is enabled. Enabling will occur when the other object touches it. You will need to
enable the body when applying an explicit force.

What's the best primitive to use for wheels?

You may find that using spheres for wheels works better than using cylinders. A sphere wheel model usually
only has one contact with the ground. This makes tuning the handling easier, it's much easier to ensure you
have good contact information when using a simpler primitive, and the test is a bit faster.

What about steering and suspension?

First have a look at the CarTerrain demo in MeTutorials for an example of running a simple car on an
RGHeightfield.
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You will probably want to ‘orient’ the friction direction to lie along the direction of the wheel. This allows you to
set different properties for the 'rolling' and 'slipping' directions of the tyres. The CarTerrain demo does this
using the cross-product of the contact normal direction and the wheel hinge direction (although you might
want to use a PerContactCB rather than PerPairCB).

Make sure you set the 'FastSpin' axis each time step for each of your wheels. This ensures that you don't
'lose’ small components of rotation (eg. steering) when the wheels are spinning at high speeds.

Take care when developing your tire model. If the force values you calculate are from slip angles at low
speeds you may find the angle flipping a lot. When translated into a force that may cause weird sideways
swaying effects. As a suggestion you could use slip velocity at low speeds and slip angle at high speeds.

Collision

How should | represent my terrain collision model?

You should use trilists. There are a number of reasons for this. Having listened to our customers, trilist
provides the flexibility and speed that is needed when integrating with various triangle storage systems. It
was designed for collision between terrain and dynamic objects, and static and dynamic objects, where
dynamic objects are represented by a simple geometry.

Trilist provides game developers with a lot of flexibility so that they can integrate it with their application more
easily. They specify the triangle vertices / normals and any other information - such as triangle textures -
through their application. This will enable them to supply information to the collision that their particular
application knows about - for example, they may already have triangle vertex information stored for use with
their choice of renderer.

Convex mesh - trilist and aggregate - trilist collision are supported in Karma.

While trimesh and heightfield are recognised collision representations, there are reasons not to use these.
Karma no longer supports trimesh. Trimesh was developed with engineering solutions in mind, i.e. collision
between high count polygon meshes of arbitrary topology. It is not really applicable to games where the
collisions between two trimeshes is slow. If you need to do collisions between two complex shaped objects
use an "aggregated" set of convex hulls. Heightfield was believed to be useful for terrain but is not flexible
enough to deal with the ever-expanding number of methods of storing triangles for terrain.

What is the best way to use triangle lists?

Karma collision stores the extents of the bounding box around the terrain that can be changed dynamically if
necessary.

Karma collision does the bounding box - object farfield collision test and if there is an intersection, calls the
user defined callback and passes control to your application. It is then left to the developer to generate the
(culled) list of triangles within the bounding box to pass back to Karma to perform the nearfield test on and
generate contacts. You could pass all of your triangles back, but this would be excessive. In the ideal, the
number of triangles in the list will be as low as possible. As an alternative method you could do all your
triangle culling before the main call to Karma which may reduce the callback work for some applications.

The main problem you may come across is when apparently spurious contacts are generated, causing the
colliding object to move in unexpected direction suddenly. This may be for a number of reasons. Firstly, edge
contacts are notorious for creating strange contacts, mainly because if the surface is relatively smooth,
edges are not expected. Tri-list contains no connectivity information so if you know that you have a smooth
surface then it is best to turn off edge contact generation. Similarly, since there is no connectivity information,
if triangles are passed to tri-list and they occupy the same triangle space, two identical contacts may be
generated. This sometimes causes problems with Kea. If you suspect this is happening then it is best in the
per pair callback routine to cull similar contacts (see MstBridge in documentation).

Remember that the order of the vertices has to correspond to the normal you give it according to a 'right-
hand' system. So it looks like your 'top' triangle has the vertices in the wrong order. Also - just setting the
contact position/penetration to fixed numbers in the callback might cause some odd behavior.

While using tri-lists, try to draw your generated contacts for debugging purposes, it will help a great deal if
any of the above quirks occur.
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How do | add an object into a collision space that interacts with only one other specified object?
Two ways to do this:

* Insert into the McdSpace farfield as usual, and just make lots of calls to McdSpaceDisablePair to
disable interaction with each model in turn. Easy, but not very elegant.

< Don'tinsert the model into the McdSpace at all. Each time you call McdSpaceUpdate, update the model
yourself by calling McdModelUpdate. Updating a model recalculates its position using any relative
transforms, updates its AABB etc.

Now, look in MstBridge.c, function MstBridgeUpdateContacts, to see where you currently get pairs of
potentially-colliding models out of the McdSpace and process them. You can change this to do all the pairs
generated by the farfield, and then make a model pair yourself containing the model you didn't insert, and the
one thing it can hit in the space, e.g. (please use this as a guide only):

MeBool pairOverfl ow,
McdSpacePairlterator spacelter;
McdModel Pai r* pair;

/* end state-nodification node, ready for state queries */
McdSpaceEndChanges(s) ;

/* Initializeiterator for this space. */
McdSpacePai r | t er at or Begi n(s, &spacelter);

/* Keep getting pairs fromfarfield until we're done. */
do
{
McdModel Pai r Cont ai ner Reset (b->pairs);
pai rOverfl ow = McdSpaceCGet Pairs(s, &spacelter, b->pairs);

/* Initialises "Hello' pairs and clears ' Goodbye' pairs. */
Mst Handl eTransi ti ons(b->pairs);

/* Cenerate collision information and pass to dynami cs. */
Mst Handl eCol | i si ons(b->pairs, s, w, b);

}
whi | e(pai rOverfl ow);
McdModel Pai r Cont ai ner Reset (b->pairs);

/* Make a nodel pair containing ny nodel (not in the space),
and the one it can hit. */
pai r = McdMbdel Pai r Creat e(myModel , hit Model ) ;

/* Put the pair into the container. */
b- >pai rs- >hel | oFi rst = b->pairs->helloFirst - 1;
b->pairs->array[hel |l oFirst] = pair;

/* As before. This will '"hello" this nodel pair and do the test. */
McdHel | o(pair);

Mst Handl eCol | i si ons(b->pairs, s, w, b);

McdGoodbye( pair);

/* Now cl ean up. */
McdModel Pai r Destroy(pair);

/* end of state-query node, ready for state nodifications. */

McdSpaceBegi nChanges(s) ;
This could be improved further by doing a quick AABB test on the two models before creating a model pair
for them.
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MeBool overlap = 1;
MeVector3 nyM n, nyMax, hitMn, hitMx;

/* Get bounding box fromeach nodel. */
McdModel Get AABB( myMbdel , nyM n, nyMax);
McdMbdel Get AABB( hi t Model , hitM n, hitMax);

/* Do test. */

i f (myMax[ 0] < hitM n[O0]
nyMax[ 1] < hitM n[1]
nyMax[ 2] < hitM n[2]
overlap = 0;
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i f(overl ap)

/* Make nodel pair, hello, add to container, handle collisions, goodbye,
destroy. */

}
It should also be easy to extend the many of your own models, but make sure the ModelPairContainer is big
enough when you add them.

I'm using cylinders for lampposts in my game and there are many of them. Is it worth reusing an
existing model or is it cheaper to release the old one and create a new one?

First of all, remember that many models can share the same geometry. So if you only have a couple of
different sizes of lampposts, you can just create one McdCylinder for each size, and direct each model to the
correct geometry. The RainbowChain and ManyPendulums examples show this.

As for re-using McdModels, this is probably a good idea. There is actually very little overhead in creating or
destroying McdModels, because they are simply added or removed from a pool that is allocated at setup
time. However, inserting and removing the model from the farfield McdSpace does have some overhead. It
would probably be much quicker to simply change the position of an McdModel to represent a new lamppost
object.

McdSpace works by keeping three axis-sorted lists of 'start' and 'end’ markers for objects in the scene.
Whenever an object moves, the farfield updates for any markers that are passed. When you remove or add
an object to the farfield it has to first be moved to or from infinity, passing any markers on the way. Moving it
a small distance inside the farfield passes fewer markers.

I'm confused as to where the McdModel transform is held.

Each McdModel has a pointer to a transform, rather than storing one internally itself. When you call
McdModelSetBody it sets the McdModel to point to the transform held inside the MdtBody. If you call
McdModelSetTransformPtr after this, you will change where the McdModel looks for its transform. If, for
example, the transform you pass in to McdModelSetTransformPtr is only declared locally, it could cause a
crash when it tries to access it inside collision. Also, because the McdModel no longer points to the dynamics
transform, it won't move as the MdtBody does.

If you have tied an MdtBody and McdModel together, and you want to move it, use MdtBodySetPosition etc.
instead.

Performance Considerations

I've prototyped my game with many objects in the world and that works fine. However, our level
designers have now populated the world with lots and lots of objects, and things are starting to
bog down a bit. What can you suggest we do to speed up the frame rate?

There are several things that can be done to speed simulations up. To start with, check your performance bar
to see if it's a constant slowness, or just 'spiking' occasionally. Are there particular situations that cause it to
slow down?

The first thing to know is that the basic static/dynamic box friction model can make large systems go more
slowly. Try (as a test) turning off friction for objects against the world and see if it helps. When friction is
turned on and bodies come into contact it will call the Linear Complementary Problem (LCP) solver. If a body
comes in and out of contact it creates discontinuities in the forces causing an action in the solver called
'pivoting’. This also occurs when an object moves from static to dynamic friction.
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Pivoting can cause slowness for large systems and is more pronounced on the PlayStation®2 version than
the PC. One solution we've found is not to use box friction and use slip instead. This eliminates the change
from static to dynamic friction. The way to totally turn off LCP is to also to set MaxAdhesiveForce to
ME_INFINITY for every material, or in the contact parameters. This eliminates LCP pivots on colliding
objects. The down side of this is that for one frame, the colliding objects will stay in contact with one another
giving the impression of stickiness. However, when used in conjunction with slip it allows the body to move.

Using no friction and increasing damping works, but isn't great.

Large systems occur either when there is a object containing many joints or situations where many objects
touch each other i.e. a wall with lots of bricks in. This forms a large matrix which needs solving.

For the objects with many joints you could use level of detail (LOD) physics modelling similar to LOD in
graphics. If you can't see something or you are a long way from it, you can degrade the friction model/cull
more contacts etc. The GreaseMonkey demonstrates this by having a mode where the car is made up of five
bodies (one chassis, four wheels) and another mode where there is one body and four contacts for the
wheels. Think about how your physical models could be reduced in this way. It's worth remembering that
however fast Karma is, and will be, it will always take up a finite amount of time and avoiding unnecessary
calculations is usually a good thing to do.

Could you provide a table of numbers, which indicates the relative speed of collision detection
and contact generation between different types of primitive and non-primitive geometries? This
would be very a helpful guide in making decisions about what kind of collision geometries to use.

In principal there's no reason why not, and we'd be happy to publish this information if we had it, but the
relative speed of geometries varies by platform and by the extent of completion of collision optimisation. In
general the order (fastest first) is spheres and planes, boxes, cylinders, convex objects, triangle meshes.
The speed of trilist is dependent on too many factors outside Karma to be predictable independent of the
application.

What causes the constraint solver to take a variable amount of time when solving a set of
constraint equations?

Every time Kea takes a step, the constraint solver must go through a number of iterations to find a good
solution for the forces on the rigid bodies. This is the only part of Kea that takes a variable amount of time. If
it were not for the constraint solver, then each step would take the same amount of time for the same system.

Sometimes the constraint solver will fail to find a solution, and the warning message “cycle has been
detected” or “The maximum number of iterations has been exceeded” will be output. Even with a warning
from the solver the behavior will usually be stable enough. If there are any visible problems, epsilon may
need to be increased.

Sometimes the constraint solver takes a large amount of time when many objects make or break
simultaneous contact, or when the contacts involve very large collision forces. Because of the large number
of physical interactions taking place at a particular time, the amount of time required to do the physics can
increase. There are two ways in the current version of Karma that will help here:

« Design the simulation carefully to try and avoid this situation
« Limit the constraint matrix size, as discussed below.

Is there any way of reducing the constraint matrix size to speed up my simulation?

Each time step, Mdt groups all bodies into 'partitions' that are constrained together either by contacts or
joints. A collection of bodies joined together (e.g. a rag-doll) will always be in the same patrtition. If the rag-
doll hits a box, the doll and the box will be in the same partition while in contact. Contacts to the world do not
join partitions together e.g. two boxes sitting separately on a static plane will be in different partitions.

When Kea solves for a group of bodies, it constructs a matrix representing the way the constraints limit the
freedom of movement of the bodies in the partition. This matrix has one row for every degree of freedom
limited by the constraints. The number of constraint rows in a partition is a factor in the time taken to solve
that partition, and the amount of memory that Kea uses to build and solve the matrix for each partition is
related to the square of the number of rows. If you have a large nhumber of bodies connected by joints and
contacts, the matrix size (and the consequent memory requirements) may be inconveniently large.
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By setting a limit on the matrix size, you can instruct Karma to remove constraint rows from the simulation.
This allows an application to degrade simulation fidelity to meet memory constraints. Deleting constraints
may also decrease Kea's running time significantly. The maximum matrix size for Karma to attempt to
reduce a partition to, is set using

voi d Mit Wor | dSet MaxMatri xSi ze(const MitWorld w, const int size)

To try to meet this limit, Karma infers which constraint rows can be removed with least loss of fidelity. By
default, first rows which enforce friction constraints are removed, then contacts between pairs of bodies, then
contacts between bodies and the world. Contacts are removed in order of depth, from the shallowest
penetration to the deepest. Joints are never deleted, and at least one contact is always left in each contact
group. While a more aggressive constraint reduction strategy is possible, large constraint violations are
more likely to be avoided by an application-specific strategy based on the properties of a particular
simulation.

MdtWorldSetContactimportanceCB can be used to define a callback that replaces the above method for
ordering contacts, with a user-defined order of importance.

The MdtKea library contains a function MdtKeaMemoryRequired, that returns the amount of memory
required to solve a particular set of partitions. The MeChunk utility in the MeGlobals library holds a pool of
memory that is automatically resized as necessary and used by MdtKea each time step.

Implementation Considerations

Are the force and torque accumulators MeVector4s?

Yes they are, inside the MdtKeaBody struct, held inside the MdtBody struct. The MdtKea structures are
designed to ensure quad-word alignment for data where needed. This is needed by PS2/SSE etc. for SIMD
speed-ups. The final element of each is just treated as 'padding'.

Why are the impulse accumulators MeVector4s instead of MeVector3s?

Just for symmetry with the force/torque accumulators in the MdtKeaBody struct. The last elements should be
kept as zero for safety though.

My simulation is deterministic if | stop it and re-execute it. However, if | simply restart it without
resetting, it isn’t - how can | make my simulation deterministic in this case?

Because Karma simulations use deterministic Newtonian dynamics to model the virtual world it is reasonable
to expect that a simulation with identical starting conditions, run on a machine with a given configuration,
would evolve in the same way provided there is no external interactivity with the system. Indeed, this is the
case if a simulation is stopped and re-executed. However, if a Karma simulation is simply restarted, the
simulation will almost certainly not proceed along an identical path each time. This is because the order in
which information is passed to the constraint solver, and hence the order of the data on which calculations
are performed, will very likely change when a dynamic object or collision model is removed from the
simulation and then added again when it restarts. This is because Karma optimizes the arrangement of
objects in memory which permutes the order in which they are tied to the solver.

To get your simulation to follow the same path, the order in which data is sent to the solver must be identical.
Sort Keys are used to accomplish this. This allows Karma to deterministically order the input to the
constraint solver. Sort keys must be positive and are in the range 0 to 2**15 - 1 for collision objects and 0 to
2**31 - 1 for dynamics objects. Similarly, joint keys run from 0 to 2**31 - 1.

Which exceptions might Karma generate on x86 platforms?

In normal operation Karma may generate denormalized operand, numeric underflow, or loss of precision
exceptions. Karma should never produce overflow, divide-by-zero, and invalid operation exceptions.

Is Karma thread-safe?

No. Karma implements no protection against concurrent access to data.
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On x86 platforms, Karma is fully reentrant: independent instances of Karma can run safely in different
threads, where "independent" means the MdtWorld, MstBridge, and McdFramework are different share no
writable data structures, such as McdGeometries or compound transformation matrices for McdModels.

On PlayStation®2 , you cannot run the Karma pipeline concurrently in multiple threads, since many of the
algorithms assume control of the scratchpad and/or VUO.
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Frame time used by Karma

Each frame the proportion of the processing time that is taken by Karma depends on the number of objects
in collision and the number of joints used. It is desirable for dynamics to use as small a proportion of the
frame time as possible. For this reason, considerable effort has been put into optimizing Karma to make
efficient use of both the PlayStation®2 and x86 platforms. However, as the time spent by Karma depends on
the simulation complexity, it is important that the game programmer limit the number of contacts and joints to
reduce the proportion of the frame time used.

The amount of time taken depends on the total number of constrained degrees of freedom of the system.
Consider a pair of objects. Their relative position is specified by three values, and relative orientation by a
further three values. These six values are the six degrees of freedom of the pair of objects. A constraint, such
as contact or a joint, limits motion in a certain number of the degrees of freedom. For example, a frictionless
contact just prevents penetration of the objects at a given point, and so constrains one degree of freedom. A
friction contact prevents penetration and also applies friction to the remaining two linear degrees of freedom,
and so constrains three degrees of freedom. A ball and socket joint ensures that the constrained pairs of
objects can rotate relative to each other but not move relative to each other, thus constraining three degrees
of freedom.

Example 1 — A car with physically modelled wheel rotation, steering and suspension.

A car can be physically modelled as five bodies - a chassis and four wheels. When the car is in mid air, there
are four constraints. These constraints join the wheels to the car, and apply forces due to steering and
suspension. They each constrain all six degrees of freedom, so the total number of degrees of freedom of
the system is twenty four (4x6).

When the car is on the ground, there are four additional constraints, one friction contact for each wheel.
These prevent the car from falling through the ground and also apply friction forces to the wheels. They each
constrain three degrees of freedom, bringing the total number of degrees of freedom constrained to thirty
two. (4x5 + 4x3).

Example 2 — A simplified car

With the above model, the user applies a torque to the wheels and MathEngine calculates the friction force
applied by the ground and the resulting linear force that moves the car forwards. This is quite nice because
the linear motion of the car is just something that happens as a consequence of applying torque to the
wheels, just like in real life. However, the gamer doesn’t really care how the linear motion happens, they just
care about the physical and graphical effect of steering and suspension. With this in mind, a much simpler,
cheaper model can be used.

In this model, the car is one physical body. Whilst in the air, there are no constraints, so the car is free to fall
under gravity. The number of degrees of freedom constrained is zero.

When on the ground, the wheels are represented by four friction contacts. The softness parameter of the
contact is set to provide suspension and steering is achieved by setting a greater maximum friction in the
direction you want to steer. Four friction contacts constrain a total of twelve degrees of freedom.

Example 3 — Throwning a box at a wall

Suppose you are simulating a bar-room brawl. You may want to allow characters to throw boxes, tables,
chairs etc. at each other. The simplest case is a box in the air. Like the car in the air example, the number of
degrees of freedom constrained is zero.

You will want the box to collide with the walls. In the worst case, three contacts will be required to stop the
box going through the wall. Suppose you used three friction contacts. The number of degrees of freedom
constrained will be nine (3x3).

However, it is not necessary to model the friction of the wall unless you want to rest the box against the wall,
so you could use three frictionless contacts, reducing the number of degrees of freedom constrained to three
(1x3).
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Example 4 — A human falling down stairs

Most of the time, the best way to move humans in games is to use motion capture animation. However, if for
example you want a character to fall backwards over a table or down a staircase, then the amount of motion
capture required can become impractical. Physical modelling can be more cost effective in these cases.
Take the example of a human falling down a staircase. A simple model of a human could consist of ten
bodies - a head, a torso, two forearms, two upper arms, two thighs and two calves. Nine limited ball and
socket joints are used to hold the ten bodies together and provide joint limits and muscle modelling. This
constrains twenty seven (3x9) degrees of freedom. In the most extreme case, twenty seven contacts are
required to prevent the human falling through the staircase. The total number of degrees of freedom
constrained is one hundred and eight (3x9 + 3x27).
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Dynamics Algorithms - Technical Information

An overview of the rigid body dynamics simulation algorithms currently being employed in game physics
follows. These algorithms are conveniently categorised as Mirtich-style methods, penalty methods and
Linear Complementarity Problem based methods.

Mirtich’s method

In Mirtich’s method it is assumed that only one pair of objects can be in contact at any given time. When a
contact occurs, an impulse is calculated to prevent penetration. Time is then advanced until the next collision
occurs. Resting contact is modelled by micro impulses. The advantage of this method is that it is not
necessary to solve a big matrix equation, because each collision is considered in isolation. The disadvantage
is that it is very hard to make the algorithm cope with arbitrary stacks and piles of objects and arbitrary
external forces.

Penalty Methods

Penalty methods prevent penetration by modelling the contact points between objects as stiff springs. In
general, a semi-implicit or implicit integrator is required to achieve stability. Such an integrator requires a
matrix equation to be solved. With penalty methods, it is difficult to simulate stable stacks and piles of
objects.

Consider an inequality constraint where objects can come into contact but are not, as with a joint, bound. A
(stiff) spring can be used to model the contact. If the objects come into contact then the spring acts to
separate them. The spring is called stiff because the force it produces varies rapidly with respect to changes
in displacement. When objects do not penetrate there is no constraint and the spring does not exist. A ‘cheat'
to allow 'bounciness' between contacting objects is to reduce the spring stiffness. The object’s penetration
increases i.e. the constraint is violated.

When modelling collisions using penalty methods, a good collision detection system is required. Object
penetration can result in large forces being applied to separate objects. Hence there can be inaccuracies
here - for example, the simple case of a ball being dropped from different heights onto a plane. The height
that it bounces to may not be predicted exactly. As far as games are concerned this is usually not a problem
- the solution is accurate enough. In robotic research the ability to violate a constraint can be advantageous.
The software is very stable and robust which is useful for a number of applications.

Linear Complementarity Problem (LCP) based methods

The most common Linear Complementarity Problem based method used in graphics was developed by
David Baraff of Pixar. In Baraff's method, different techniques are used for colliding contact and resting
contact. For colliding contact, a matrix equation is solved that provides the impulse required to
simultaneously repel colliding objects. For resting contact, a matrix problem called a Linear Complementarity
Problem, or LCP, is solved. These methods naturally model articulated bodies and friction. In order to solve
the LCP Baraff suggests using a Dantzig Solver

Baraff’s method has a number of speed and stability problems, and since Baraff first published his methods,
researchers have been working to overcome them.

Firstly, there are a number of physical situations where Newton’s laws with Coulomb friction are inconsistent,
whatever type of solver is used. The most famous of these situations is Painleve’s problem. Unfortunately,
Painleve’s problem is a very simple situation involving a rotating bar and a plane. This means that solvers
that don’t cope with Painleve’s problem are likely to fail even in the simplest of scenes. Baraff uses an
acceleration based constraint solver which fails on Painleve’s problem - the way Coulomb friction is modelled
by Baraff leads to large LCPs that do not necessarily have a solution.

Solving for impacts and resting contact as separate stages increases frame time and produces complicated
code.
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Baraff’'s method is an explicit method. This means that accumulated numerical error can potentially cause
the simulation to explode. To overcome this, Baraff adds damping which has to be tuned by the user to
achieve stability. Ideally, a simulator should work in all situations without the need for user tuning. Often,
Baraff’'s method is used with higher order integrators such as Runge Kutta to achieve stability. This method
requires 4 times as many force calculations per frame as 15t order methods such as implicit Euler.

Baraff doesn’t cope well with degenerate constraints which naturally arise when dynamics is used together
with collision detection. Degenerate constraints lead to LCPs that are not symmetric positive definite. Such
LCPs are not guaranteed to have a solution.

Other LCP based methods

Recent research has produced LCP based methods that are somewhat confusingly named time-stepping
methods. These methods formulate the contacts and constraints in terms of force and velocity rather than
force and acceleration. The solver then calculates the force to apply over the timestep to simultaneously
satisfy all the velocity constraints. One advantage of such methods is that both impact and resting contact
are calculated by the same simple algorithm. Another is that such methods provide solutions for Painleve
type situations. Researchers have proved stability properties of time-stepping methods which are not
enjoyed by Baraff's method.
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Karma x86 and SSE Optimizations

Aside from algorithmic optimizations, considerable effort has been expended in optimizing the code to run
well on x86 and SSE (Streaming SIMD Extensions) platforms.

The collision detection and high-level Mdt algorithms operate on small vectors, and they are written to use a
vector maths library.

The dynamics algorithms perform much more exotic matrix operations than the collision detection
algorithms. For this reason, these algorithms have been rewritten in hand coded assembly language. Table 1
shows the optimization status of each algorithm in the Karma pipeline.

The dynamics matrix is typically very sparse i.e. most of the element entries are zero. All the algorithms that
manipulate it, such as the Cholesky factoriser, solve and matrix-vector multiplier have been optimized to take
advantage of its sparsity. The J matrix is also very sparse, and its sparsity is well defined. All operations that
access J access small submatrices of J. In a naive implementation, the submatrices are not necessarily
aligned on 4 float boundaries, so the fast aligned load instructions of SSE cannot be used. For this reason,
Kea uses a highly novel storage format for J which ensures that the submatrices required are stored
consecutively in memory, to increase cache efficiency whilst keeping them aligned to 4 float boundaries.

All algorithms that have been hand coded in assembly language have been implemented twice, once for x86
(Pentium, Pentiumll and AMD) and again for SSE/SSE2 (Pentiumlll and Pentium4). The vector instruction
set of SSE provides impressive speed gains.

Section Math Cache Handcoded | Handcoded
Library optimized | X86 SSE

Farfield (AABB tests) .

Nearfield (Intersection tests) o

Mdt (partition and freeze) .

Bcl (make constraint matrix) .

Calc J*M1 and rhs . . .

Calc A=JM1xJT . . .

Factorise A . . o

Solve A o . o

Factor Q . . .

Solve Q o . .

Calc constraint forces . . .

Update position and velocity o
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Benchmarks

Karma simulation of a high LOD car (4 joints) on 1.4Ghz P4 (Average over 50
frames)
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This figure shows the performance of the original C code, the C code optimized for cache and sparsity, the
x86 code and the SSE code when simulating a high level of detail car consisting of 5 bodies, 4 joints and 4
contacts. The original C code took 1.3ms per frame, the SSE code took 0.055ms per frame, a twenty-three
fold speed increase

Karma simulation of stacks of cuboids on a 1.4Ghz P4 (Average over 1323
frames)
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This figure shows the time taken by each platform to simulate the ‘“Topple’ example. Topple consists of 6
stacks of between 3 and 6 cuboids. The average simulation time of the original C code was 0.32ms. The
simulation time of the SSE code was 0.054ms, a six-fold increase.
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Karma for PlayStation®2

Processor usage

Each of the three main MathEngine functions (McdSpaceUpdateAll, MstBridgeUpdateContacts and
MdtWorldStep) use the CPU and VUO. These functions don’t spawn threads, patch interrupts, or otherwise
take any CPU or VUO time outside of their scope. The functions will kick off VIFO chains, but the functions will
not return until the last VIF chain has finished. VU1 is not used by the MathEngine toolkits.

It is common, (though not necessary) to call the 3 MathEngine functions at the start of each frame. Once
MdtWorldStep has returned, the game programmer is free to use the cpu and VUO for rest of the frame.

< One 60Hz Frame >

v [ S
Vo maengine code [ SN

CPU MathEngine Code -
time —»
‘\k McdWorldStep Not to scale.

MstBridgeUpdateContacts Proportion of
McdSpaceUpdateAll frame used

Code size

The table in the ‘Object Code and Static Data Section’ in ‘Appendix C Memory Allocation in Karma’ shows
the size of each Karma library on the PlayStation®2.

Collision

The MathEngine Collision Detection library consists of seven libraries, namely McdCommon.lib,
McdConvex.lib, McdConvexCreateHull.lib, McdFrame.lib, McdPrimitives.lib, McdRGHeightField.lib and
McdTriangleMesh.lib. The main library is libMcdFrame.a, which provides the collision framework. The other
six libraries provide specific types of collision detection and are optional. They can be used alone or in
combination. LibMcdPrimitives.a detects collision between primitive objects such as cuboids, cylinders,
spheres etc. These tests are very fast and good results can often be achieved by approximating complex
objects by a number of primitives for the purposes of collision. If this does not give good enough results then
LibMcdConvex can be used. This detects collision between convex objects. This library can be used with
non-convex objects by splitting up the object into convex pieces. Although this library can be used with a
wider variety of objects, it can be slower than the Primitives library. The most difficult collision detection
problem is detecting collisions between two arbitrary triangle meshes. This type of collision is used when it is
not possible to approximate a mesh by a union of primitives or convex pieces. This type of collision detection
is very slow, and we do not recommend that it is used in PlayStation®2 games.

The libraries have minimal interdependency and many are optional.

Scratchpad, VUMEMO, MICROMEMO and VUO registers.

These three MathEngine functions make extensive use of the scratchpad, MICROMEMO and VUMEMO. The
three MathEngine functions do not preserve the state of the scratchpad, MICROMEMO, VUMEMO or VUO
registers.
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VifO chains

As MathEngine makes extensive use of VIFO and VUO within the three high level functions, the game
programmer should not attempt to run a VIFO dma chain in parallel with the functions. The dynamics core,
kea disables VIFO interrupts on entry due to a conflict between VIF interrupts and the bcOf instruction.

Compatibility with compilers

The example code and toolkit source can be compiled with the SCE provided ee-gcc (version 2.9.5 or later)
or the SN Systems’ Pro-DG compiler. A Metrowerks Codewarrior build environment is also supplied’.

Compatibility with renderers

Karma is supplied with a straightforward renderer, MeViewer2. This is an unoptimized renderer and its main
use is for viewing the MathEngine examples and tutorials.

Karma can be used with middleware renderers and has been tested with Renderware by Criterion Software
and Alchemy by Intrinsic Graphics.

Optimizations

Karma was initially developed on the SGI and PC in C. Before optimization, Karma was slower on the
PlayStation®2 than on a 300MHz PC. Optimization has substantially increased the speed of Karma. This
section describes how the code has been optimized.

Vectorisation

All components of Karma are rich in matrix and vector operations. The dynamics core, kea contains little
else.

VU0

As the majority of the instructions executed by the core components are floating point multiply accumulate
instructions, a good measure of the optimality of the code is the number of floating point operations executed
per second. This is measured in GFlops, where 1 Gflop is 109 floating point operations per second. A floating
point operation is either 1 multiply or 1 add. By this definition, the peak performance of the cpu is 0.6GFlops,
VUO 2.4GFlops, and VU1, 3.0GFlops. This gives a total of 6.0GFlops for the emotion engine.

Vectors are not first class types in C, so there is no way for a C compiler to compile a vector expression into
a VU assembly program. This meant that when the unoptimized C code was run on the PlayStation®2 only
the cpu was used, so the code could only utilise 0.6 GFlops of the total 6.0 GFlops available.

It was clear that the code would need re-writing to use VUO. This would take the total number of GFlops
available to 0.6 + 2.4 = 3.0.

Macrocode or Microcode

VUO can be used in 1 of 2 modes, macromode or micromode. Macromode is used by some components of
the toolkit, and micromode by others. When using macrocode, you have 16k of fast memory available (the
scratchpad), when using micromode you only have 4k of fast memory available (the VUMEMO ). This was
the main factor used when deciding whether to use macromode or microcode for a particular algorithm.

Scratchpad double buffering

The PlayStation®2 accesses main memory through a Level 1 cache. As the main memory is Rambus®
memory, cache line loads are very slow (~40 cycles). Our original C code, like most C code developed on the
PC, often missed the cache.
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On the PlayStation®2 there is an alternative to accessing the main memory via the cache, that alternative is
scratchpad double buffering. The scratchpad has a one cycle access time and can be accessed concurrently
by the dma controller and the cpu. In the simplest case, scratchpad double buffering is used to accelerate
algorithms whose input and output are lists of the same length. The scratchpad is divided into two 8k buffers.
At every iteration of the algorithm, one buffer is being processed, and concurrently the other buffer is being
written to the output list and then refilled from the input list. At the end of the iteration, the buffers are
swapped.

Once a scratchpad double buffer algorithm is correctly tuned, the processor never stalls for data. In these
cases the PlayStation®2 can often outrun a pc running at several times the clock rate! The biggest hotspot of
the toolkit was kea, the dynamics core. Kea consists of around six sparse linear algebra algorithms run in
sequence.

Scratchpad double buffering can only be used if the algorithm is able to operate on one chunk of data

(typically 8k long) at a time, without accessing any other chunks. Originally, the sparse linear algebra

algorithms we used did not have this property. A sparse matrix format has been developed that can be
scratchpad double buffered which is just as efficient as the original.

Chunkable data is also required when running microcode, because the vector unit can only access the 4k of
data in that is in the VUMEM at any given time. The new sparse format allows each algorithm to be
implemented in either scratchpad double buffered macrocode or microcode.

Summary

» The collision detection toolkit uses macrocode to perform vector operations on geometry data.

» The dynamics core, kea, uses microcode to perform its most time intensive algorithms and scratchpad
double buffered macrocode for its other significant algorithms.

* No significant algorithm in kea accesses main memory. Almost all memory access happens via dma, in
parallel to processing.
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Performance of a ‘Rag Doll’ Simulation on the Sony
PlayStation®2 using MathEngine Karma

The PlayStation®2 has a complex but potentially powerful architecture. For this reason, the amount of
optimization required to get good performance is often greater than is required on the PC. Karma has been
optimized to take advantage of powerful features of the PlayStation®2 such as VUO microcode and to
overcome pitfalls such as Rambus® latency. This optimization work has been ongoing for the past 2 years,
and is projected to continue.

Despite the success of the optimizations performed so far, care is required when setting up simulations to get
the best performance out of the PlayStation®2. This document describes the current state of optimization,
some of the planned future optimizations and also tips for tuning simulations to run well on PlayStation®2.

In this document, we will analyse the ‘Ballman’ example. This example consists of a ‘rag doll’, a staircase
and a stack of boxes. The first thing to note is that the simulation time does not depend on the number or
type of objects present, but on the interactions between objects. In Ballman for example an interaction
between the rag doll and the stack of boxes is more expensive than the interaction between the rag doll and
the floor. Not only do different types of interaction take different amounts of time, but they also may stress
different parts of the Karma pipeline, i.e. different interactions cause different parts of the code to be the ‘hot
spot’. For this reason, optimization is best performed in the context of a specific application, rather than trying
to optimize for the average case.

Application level Optimizations

Apart from the ongoing low-level optimization of the Karma code, there are a number of application-level
techniques for improving a simulation’s performance on PlayStation®2. The types of interactions in Ballman
cause a part of Karma called the Linear Complementarity, or LCP solver, to become the bottleneck. The LCP
solver is responsible for calculating the forces to apply to a set of objects in order that certain constraints on
their relative velocities are met. In particular, the LCP solver calculates friction forces and non-penetration
forces.

The LCP is iterative in that it makes an initial guess of the forces, then if the velocity constraints are not met
immediately, it refines the guess until they are. Unfortunately, the code that makes the refinements is
currently limited by the DMA bandwidth from the CPU to VIFO. For this reason, interactions that generate
many LCP iterations run much slower on PlayStation®2 than on PC, even when clock speed is taken into
account. For now, the best way to make simulations run well on the PlayStation®2 is to minimise the number
of LCP iterations.

There are two main ways of reducing the number of LCP iterations. The first is to use viscous friction instead
of static/dynamic friction. This is done by setting the maximum friction force to infinity. The amount of
dynamic friction is set using the slip parameter.
/* Sets the friction type between materiall and material 2 to viscous */
/* Amount of friction iIs determned by VISCOCITY */
#define VI SCOCI TY 0. 3f
p = MstBridgeGet Cont act Parans(bridge, materiall, material 2);
Mt Cont act Par ansSet Type (p, Mt Contact TypeFriction2D);
Mt Cont act Par ansSet Fri ction(p, MEI NFIN TY);
Mt Cont act ParansSet Sl i p (p, VI SCOCTY);
The second optimization technique is to make surfaces adhesive. This is done by setting the max adhesive
force parameter of the contact params to a large number. For maximum speed, the max adhesive force
should be set to infinity.
/* Allow contacts between materiall and material2 to become adhesive during the
frame */
p = MstBridgeCet Cont act Parans(bridge, materiall, material 2);
Mdt Cont act Par ans Set MaxAdhesi veFor ce(p, MEI NFI NI TY);
In simulations without joint limits, implementing these two optimizations for all possible pairs of materials
ensures that the LCP solver will always guess correctly the first time, and hence never execute the slow
iteration code. The disadvantage is that viscous friction doesn’t look as good as proper static/dynamic friction
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and that adhesion causes surfaces to be slightly sticky. However, somewhere between applying these
optimizations for all material pairs and no material pairs there often lies a suitable compromise between
behavior, quality and speed.

The Ballman demo has been modified to demonstrate these optimizations. To toggle between high cost and
low cost material interactions, press select on the PlayStation®2 controller to display the options menu, move
the cursor to the ‘High Quality Friction model’ and press cross to toggle. By holding down square button, the
rag doll can be propelled towards the stack of boxes. Despite the adhesion, the boxes still collapse, and the
peak dynamics time is reduced from over 16ms, to around 3ms.

Karma architecture

Karma can be thought of as a pipeline of stages. The stages are executed in sequence, and the output of
each stage is the input of the next.

The first stage is collision detection. This takes the current positions of the bodies being simulated and uses
knowledge of their geometry to identify points of contact between them. Mdt partitions the contact list into
groups of non-interacting objects. It then removes partitions that are not moving. It passes the partitioned list
of constraints to Bcl, that builds the Jacobian constraint matrix. The next few stages construct and solve an
LCP that gives the forces required to satisfy the constraints. An integrator takes this force and updates the
velocities and positions of the bodies, outputting their updated transformation matrices.

A number of sections of the pipeline have two implementations, a sparse implementation and a dense
implementation.

Section Macrocoded Microcoded SPR /VUMEM
buffered

Collision detection

Mdt (partition and freeze)

Bcl (make constraint matrix)

Calc vhmf .

Calc jlen

Calc J*M and rhs . .

Sparse Calc J*M*JT . .

Sparse Factorise A . o

Sparse Solve LCP . o

Dense Calc J*M*JT . .

Dense Factorise A . o

Dense Solve LCP . .

Calc constraint forces . .

Integrate .

Mdt unpack

Table 1 — The optimizations that have been implemented in each section
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Current state of PlayStation®2 Optimization

The PlayStation®2 has a large potential floating-point performance due to the presence of its two vector
units. The PlayStation®2 also makes use of Rambus® memory which has high burst speed but poor random
access speed. This means that contiguous DMA transfers are very fast, but Icache and Dcache misses are
very slow. The PlayStation®2 optimizations implemented so far fall into two categories, rewriting code to take
advantage of VUO in either macro or micro mode, and rewriting code to replace cache use with DMA.

Planned Optimizations

As mentioned earlier, a common bottleneck in the Karma pipeline is often the iterative part of the sparse LCP
solver, which is implemented in VIFO sequenced microcode. Initial timings showed that the microcode
execution time is a very small proportion of the LCP execution time. Experiments with the Sony Performance
Analyser hardware have confirmed that the bottleneck is the speed of the DMA transfer between the main
memory and VIFO. Further experiments showed that the bottleneck is the Rambus® memory interface, not
the DMA controller, so that even uncached accelerated loads would not be fast enough. In light of this, we
are currently implementing an algorithm that requires less data transfer.

The collision detection part of the pipeline is currently bottlenecked by Icache misses. This is due to a
complex control flow, which is currently being replaced by a simple pipeline of functions.

Performance analyser results

Figure 2 shows the output of the Sony Performance Analyser for a frame of Ballman with all the previously
described application level optimizations turned on. The Ballman example uses SCE’s PS2GL renderer.

The graph consists of 3 horizontal slices representing CPU usage, bus activity and VUO microcode usage.
The vertical axes represent saturation and the horizontal axis represents time, hence the area underneath
the CPU graph represents the amount of useful work done, and the area above represents the amount of
time wasted due to stalls. The amount of useful work done remains the same after optimization, but the
saturation increases, reducing the execution time.

CPU bus activity is drawn at the top of the graph as yellow pink and red bars, and DMA initiated bus activity
is drawn at the bottom of the graph in 3 shades of blue. CPU bus activity is caused by Icache misses,
Dcache misses and uncached loads and stores. Notice that peaks in the CPU bus activity graph correspond
to troughs in the CPU saturation graph. This is particularly evident in the collision detection section.

The main cause of DMA bus activity is the PS2GL renderer which DMAs to VU1, this is the mid-blue bar.
Sections of the pipeline that have been rewritten to buffer data through the SPR/VUMEM such as J*M and
J*M1xJT use DMA to load their data, instead of the Dcache refill mechanism. This DMA can be seen as a
light blue bar. The advantage of this is that unlike Dcache misses, DMA does not stall the processor. Note
that sections employing this optimization have very few Dcache misses and very high CPU saturation.

The remaining part of the graph shows VUO microcode usage. Unfortunately, the performance analyser
cannot distinguish between CPU instructions and VUO macrocode instructions. So, although the VUO
microcode graph looks quite sparse, bear in mind that much of the pipeline uses VUO macrocode. Note that
the dense factoriser achieves 100% VUO saturation for the majority of its runtime.
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Introduction

The aim of this exercise is to work progressively through the key elements of a MathEngine Karma
application involving a character riding a quadbike over rough terrain. Most of the application framework is
already in place including the rendering aspects. To build up the application, paste the code sections
described in this document into the application at the appropriate points. If there is any doubt, search for the
identifying PASTE_## comment string. At each step the application can be built and executed to observe the
effect of each component.

The basic sections are:

Initializing the Karma collision and dynamics framework.
Adding the update functions to the main loop.

Creating the terrain.

Creating a four wheeled vehicle.

ga A WDN

Adding user control to the vehicle.
6 Creating a rider for the vehicle.

Karma does not have an inherent coordinate system or use any specific units. Some of the utility functions
take angles as parameters. These are assumed to be in radians. The main requirement is that a consistent
convention is chosen and used throughout. Quadbike uses a right-handed coordinate system with the y axis
as up. Sl meters and kilograms are chosen as the respective length and mass base units.

Initializing the Karma Collision and Dynamics Framework

This is carried out once in any application, generally at startup. It ensures that any memory allocation
required for creating pools of bodies, collision models etc takes place before the main loop.

File: main.c
Function: I ni ti al i seMEWOr 1 d()
Identifier: PASTE_01

/* Set the default Universe Pool sizes */
si zes = Mst Uni ver seDef aul t Si zes;

/* Initialize Universe Pool sizes */

si zes. dynani cBodi esMaxCount = 20;

si zes. dynani cConstrai nt sMaxCount = 1000;
si zes. mat eri al sMaxCount = 10;

si zes. col | i si onModel sMaxCount = 300;

si zes. col | i si onPai r sMaxCount = 1000;

si zes. col lisionUser Georet ryTypesMaxCount
si zes. col | i si onCGeonet ryl nst ancesMaxCount

/* Create a basic Karnma Environnent */
uni verse = Mst Uni ver seCreat e( &si zes);
i f(!universe)

return O;
worl d = MstUniverseGet Wr | d(universe);
space = Mst Uni ver seGet Space(uni verse);

bri dge = Mst Uni ver seCGet Bri dge(uni verse);
framewor k = Mst Uni ver seGet Fr amewor k( uni ver se) ;

/* Initialize some fundanental world properties */

Mdt Wor | dSet Epsi | on(wor | d, 0.0001f);

Mit Wor | dSet Gamma(wor |1 d, ti meStep*10);

Mit Wor | dSet Gravity(world, 0, (MeReal)-20, 0);
Since this is just a standard application, Mst Uni ver seCr eat e is the easiest way to create and initialize the
Karma components. You could do this manually using Mdt Wor | dCr eat e, Mcdl ni t  etc if multiple worlds or
collision spaces were required. The universe is queried for handles to the world, space, framework and
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bridge since these will often be required during the creation of bodies and collision models. The world
parameters (epsilon, gamma and gravity) are set at this stage. In this application they remain unchanged but
they could be modified at any time. Gravity is as an acceleration vector acting down the world y axis.

File: main.c
Function: I ni ti ali seMateri al s()
Identifier: PASTE_02

groundMat = Mst Bri dgeGet Def aul t Material ();
wheel Mat = Mst Bri dgeGet Newiat eri al (bri dge);
chassi sMat = Mst Bri dgeGet NewVat eri al (bri dge);

/* Set contact paraneters for wheels */

paranms = Mst Bri dgeGet Cont act Par ans(bri dge, groundvat, wheel Mat);
Mt Cont act Par ansSet Type( par ans, Mit Cont act TypeFri cti on2D);

Mt Cont act Par ansSet Pri marySl i p( parans, 0. 0001f) ;

Mt Cont act Par ansSet Secondar ySl i p( par ans, 0. 005f) ;

Mt Cont act Par ansSet Sof t ness( par ans, 0. 0001f ) ;

/* Set contact paraneters for chassis */

parans = Mst Bri dgeGet Cont act Parans(bri dge, groundMat, chassi shat);

Mt Cont act Par ansSet Type( par ans, Mit Cont act TypeFri cti on2D);

Mt Cont act Par ansSet Sof t ness( par ans, 0. 0001f) ;
Materials determine the type of contact that is generated when two collision models hit each other. The
material itself does not have any properties. The properties are explicitly defined for the interaction between
one material and another. The material friction is modified to 2D friction (frictionless is the default). For
wheeled vehicles, friction with the ground is vital, hence additional wheel and chassis materials are defined.
Defining properties here sets the default parameters for every generated contact between those materials.
The parameters of individual contacts can be modified on their own - this will be demonstrated later.

Adding the Update Functions to the Main Loop

When the application is running the Karma components need to be periodically updated to calculate new
positions and orientations of the bodies and detect any subsequent collisions. This is normally done once per
frame.

File: main.c
Function: ti ck()
Identifier: PASTE_03

McdSpaceUpdat eAl | (space) ;

Vst Bri dgeUpdat eCont act s(bri dge, space, world);
This is the collision detection phase. McdSpaceUpdat eAl | () keeps track of all the collision models and
produces a list of pairs of models whose bounding boxes are overlapping. This information is accessible and
could be used for Al or game logic, but in this case it will just be used for generating the contacts.
Mst Bri dgeUpdat eCont act s() takes the list of overlapping bounding boxes and performs the precise
geometry tests between the collision models. Any models that are actually touching will produce a set of
Mt Cont act s between the appropriate bodies. All the Mst Bri dge code is provided with the toolkit so its
functionality can be customized if required

File: main.c
Function: ti ck()
Identifier: PASTE_04

Mit Wor | dSt ep(wor |l d, tineStep);

This is the dynamics update phase. For simplicity, this application uses a fixed time step however for real
time behavior the elapsed time since the last update would be used. The position, orientation and velocity of
each enabled body is updated during this phase. If the application is run the world will still appear a very
empty place but it is now ready for the insertion of dynamic bodies and collision models.
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Creating the Terrain

Collision models can either be attached to bodies or exist on their own. The difference is that a model without
a body will not react if another model collides with it. Generally these are used for parts of the terrain and
static objects.

File: terrain.c
Function: I ni ti al i seTerrai n()
Identifier: PASTE_05
#if USE_TRI _LIST
#define TRl _LI ST _SI ZE 50
MeVect or3 min = {-10000, - 10000, - 10000}, max = {10000, 10000, 10000} ;

MeAL| GNDATA( MeMat ri x4,tm 16) =

{
{ 1, o0, 0, 0},
{ o 1, 0, 0},
{ o o0, 1, O},
} { o, 0 o0 1}

/* Terrain height field */
Hei ght Fi el dFr onBMP( & andscape. hei ght Fiel d, "terrain2", 15);

/* Just use a real big bounding-box... crude */
| andscape. col | Geom =McdTri angl eLi st Creat e(framewor k,
mn, nmex, TR _LI ST_SI ZE,
Tri Li st Gener at or CB) ;
((McdTri angl eLi st *) | andscape. col | Geon) - >t ri angl eMaxCount = TRI LI ST_SI ZF;
#el se

MeAL| GNDATA( MeMat ri x4,tm 16) =

{
/* Defaults to XY plane so rotate by PI/2 about x-axis to orientate with Xz

pl ane*/
{ 1, o0, o0, 0},
{ o o0, -1, 0},
{ o 1, o0, 0},
{ o o0 o0, 1}

I :’mdscape. col | Geom = McdPI aneCr eat e(f ramewor k) ;
#endi f

| andscape. col | Model = McdModel Creat e(| andscape. col | Geon) ;

MeMat ri x4Copy(| andscape. transform tnj;

McdModel Set Transf ornPtr (1 andscape. col | Model , | andscape.transforny;

McdSpacel nsert Mbdel (space, | andscape. col | Model);

McdModel Set Mat eri al (| andscape. col | Model , groundMat) ;

McdSpaceUpdat eMbdel (| andscape. col | Model ) ;

McdSpaceFr eezeMbdel (| andscape. col | Model ) ;
USE_TRI_LIST determines whether the terrain geometry is a flat plane or an arbitrary polygonal surface. Itis
useful to be able to quickly switch back to a flat plane for assessing vehicle behavior and other testing
purposes. Creating a flat plane is straighforward but it defaults to having its normal along the Z axis. In this
application, gravity acts down the Y axis so the plane is rotated accordingly. For rough terrain, using a
TriangleList geometry rather than a flat plane is the best approach. The main difference between a
TriangleList and every other type of McdGeonet ry is that the actual collision geometry is undefined. It is
created with the extents of its bounding box and an application level callback function. When
McdSpaceUpdat eAl | () detects that this bounding box is overlapping with a second model, the bridge will
subsequently call this callback function. It is here that the application decides which triangles should be
tested against the second collision model. This provides a flexible mechanism that can be integrated with
any proprietary terrain data storage format. In this application, the terrain is a regular grid height field
constructed from a bitmap. This makes it very easy to return a set of triangles local to the position of another
collision model (See Tri Li st Gener at or CB() in Terrain.c).

Once the collision geometry has been created, the corresponding model can be created and inserted into the
collision space. Only models inserted into the same space will collide with each other. Because this model

isn’t associated with a dynamic body, it needs a substitute transformation matrix to position and orientate it in
the world. The memory for this matrix needs to be preserved for the lifetime of the collision model. Since this
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model is static it can be set as frozen in the space. This means that its bounding box doesn’t get updated in
McdSpaceUpdat eAl | () . However, it does have to be updated once so McdSpaceUpdat evbdel () is
called before freezing. If the collision model needed to be moved then McdSpaceUpdat eModel () would
need to be called again after changing the transformation matrix. Note that only the physics geometry is
created by these calls — the rendered geometry is created separately by calls to Cr eat e** Gr aphi cs() .

It should now be possible to build and run the application with either flat or rough terrain.

Creating a Four Wheel Vehicle

A basic four wheel vehicle consists of five dynamic bodies (one chassis + four wheels). Each wheel body is
connected to the chassis body using a suspension joint. Each of the suspension joints incorporates the
steering and drive control for the wheel as well as the basic suspension action.

File: vehicle.c
Function: I ni ti al i seVehi cl e()
Identifier: PASTE_06

veh- >chassi sBody

Mdt BodyCr eat e(wor | d) ;
veh->chassi sGeom

McdBoxCr eat e( f r amewor k,
veh- >dat a- >chassi s
veh- >dat a- >chassi s
veh- >dat a- >chassi sDi
veh- >chassi sCM = McdModel Cr eat e( veh- >chassi sGeom)
McdMbdel Set Body(veh->chassi sCM veh->chassi sBody) ;
McdModel Set Mat eri al (veh->chassi sCM chassi sMat) ;
McdSpacel nsert Model (space, veh->chassi sCM;
Mit BodyEnabl e( veh->chassi sBody );
Mdt Body Set Posi ti on(veh->chassi sBody, start Pos[ 0], start Pos[ 1], startPos[2]);
Mit Body Set Mass(veh- >chassi sBody, 150);

Q0
233
NEO

Ixyz[0][0] = 5; /[* 1/12 * m* (y2 + z2) */
Ixyz[1][1] = 45; [* 1/12 * m* (x2 + z2) */
Ixyz[2][2] = 40; /[* 1/12 * m* (x2 + y2) */

Mt BodySet | nerti aTensor (veh->chassi sBody, |xyz);

Mt Body Set Cent er Of MassRel at i veTr ansf or m( veh- >chassi sBody, conilM;
The first stage is to create the chassis body and collision model. In this case, the collision model used is a
single box primitive. By changing the geometry type, however, the chassis collision could also use an
aggregate of smaller primitives or even a convex hull although this is usually unnecessary. The center of
mass of the chassis is lowered from the center of the body using a relative offset. This makes the vehicle less
likely to roll over when cornering. Again note that we have to insert the collision model into the collision
space. We also have to set the inertial tensor to some suitable value; the default is for a sphere of radius 1
and as such is inappropriate for a long box such as our chassis. Bear in mind that there are utility functions,
such as Mst Model AndBodyCr eat e() that automate some of these tasks. Build and run.
File: vehicle.c
Function: Ini ti al i seVehi cl e()
Identifier: PASTE_07

for(i =0; i <4, i++)

veh- >wheel Body[ i ] Mt BodyCr eat e(wor | d) ;

veh- >wheel Geon i ] McdSpher eCr eat e( f r amewor k, veh- >dat a- >wheel Radi us) ;
veh- >wheel CM i | McdMbdel Cr eat e( veh->wheel Geonfi])
McdModel Set Body(veh->wheel CMi], veh->wheel Body[i]);
McdModel Set Mat eri al (veh->wheel CMi], wheel Mat);
McdSpacel nsert Model (space, veh->wheel CMi]);

Mit BodyEnabl e( veh- >wheel Body[i] );
Mit Body Set Mass(veh- >wheel Body[i], 10);

Ixyz[O][0] = Ixyz[1][1] = Ixyz[2][2] = O.25; [* 2[5 * m* r2 */
Mit BodySet | nerti aTensor (veh- >wheel Body[i], |xyz);

MeVect or 3Add( pos, startPos, veh->data->wheel Ofset[i]);

Mt Body Set Posi ti on(veh->wheel Body[i], pos[O0], pos[1], pos[2]);

/* Disable collision between wheel and chassis */

Quadbike Tutorial « 115 '




MathEngine Karma User Guide

McdSpaceDi sabl ePai r (veh- >wheel CMi], veh->chassisCM;

/* Disable collision between wheel and ot her wheels */
for(j =i-1, j >=0; j--)

McdSpaceDi sabl ePai r (veh- >wheel CMi], veh->wheelCMj]);

}

The next stage is to create each wheel body and collision model. Each wheel is positioned at the appropriate
offset to the starting position of the chassis. A spherical collision model is used since it produces the
minimum number of contact points with the terrain. A section of cylinder could be used or a convex hull
although this would require a large number of facets to give smooth rolling behavior. Generally a sphere will
give the best overall performance. As each model is inserted into the collision space the interaction between
it and the other vehicle components is disabled by disabling the appropriate model pairs. Build and run.

File: vehicle.c
Function: I nitialiseVehicle()
Identifier: PASTE_08

for(i =0; i < 4; i++)

veh->wheel Joint[i] = Mt Car Wheel Creat e(worl d);

Mt Car Wheel Set Bodi es(
veh->wheel Joint[i],
veh->chassi sBody, /* chassis body nust be specified first */
veh- >wheel Body[i]);

Mt BodyGet Posi ti on(veh->wheel Body[i], pos);
Mt Car Wheel Set Posi ti on(veh->wheel Joint[i], pos[0], pos[1l], pos[2]);
Mt Car Wheel Set St eer i ngAndHi ngeAxes(veh->wheel Joint[i],
0, 1, 0/* along the Y axis */,0, 0, 1/* along the Z axis */);

if (i == BACK_LEFT || i == BACK_RI GHT)
{
/* W don't want steering on the back wheels so | ock them */
Mit Car Wheel Set St eeri ngLock(veh->wheel Joint[i], 1);
}
Mt Car Wheel Set Suspensi on(veh->wheel Joint[i], 50000, O0.4f, 0.001f,
-0.15f, 0.15f, 0);
Mit Car Wheel Enabl e(veh->wheel Joint[i]);
Mit Body Set User Dat a( veh- >wheel Body[i], (void *)veh->wheel Joint[i]);
}

Once the bodies have been created and initialized to their starting positions, the suspension joints are
initialized. Because a joint contains information about the relative position of attached bodies, it is vital to set
the bodies that the joint attaches first. Also, when setting the bodies for the suspension joints, it is essential
that the chassis is specified first otherwise the resulting behavior will not be what is expected. The initial
position is specified as the position of the wheel with the hinge axis aligned with the world z axis and the
hinge axis aligned with the world Y axis. The two rear wheels have the steering constraint locked since for
this vehicle it is just the front wheels that are used for steering. The wheel body’s user data element is used
to store a void pointer to the suspension joint. This provides a useful method of accessing the joint from the
body or collision model. This will be apparent when using callback functions from the collision detection.
Build and run.

File: vehicle.c
Function: I ni ti al i seVehi cl e()
Identifier: PASTE_09

veh- >hBar Body = Mt BodyCr eat e(worl d);

Mit BodyEnabl e( veh->hBar Body ) ;

MeVect or 3Add( pos, startPos, veh->data->hBarOffset);

Mt Body Set Posi ti on(veh->hBar Body, pos[O0], pos[1], startPos[2]);

veh->hBar Joi nt = Mt Hi ngeCr eat e(wor | d);

Mit H ngeSet Bodi es(veh->hBar Joi nt, veh->chassi sBody, veh->hBar Body);
Mt Hi ngeSet Axi s(veh->hBarJoint, 0, 1, 0);

Mdt BodyGet Posi ti on(veh->hBar Body, pos);

Mit H ngeSet Posi ti on(veh->hBarJoi nt, pos[0], pos[1l], pos[2]);

Mt Hi ngeEnabl e( veh- >hBar Joi nt) ;
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The final additional step is to add some handlebars to the vehicle. They provide the mechanism for actuating
the rider's arms. If the handlebars were just for effect then it would probably be easier to just animate them.
A hinge joint is used to connect the handlebar body to the chassis body. For simplicity, the handlebars
haven’t been given a collision model although this would be easy to add if required. Build and run.

Adding User Control to the Vehicle

Three basic control inputs for acceleration, braking and steering are added to the vehicle.
File: vehicle.c
Function: Updat eVehi cl eControl s()
Identifier: PASTE_10
torque = veh->throttlelnput * -200;

/* Apply torque to wheel body */

Mit BodyAddTor que( veh- >wheel Body[ i ]
torque * haxis[O0],
torque * haxis[1],
torque * haxis[2]);

/* Apply opposite torque to chassis body */
Mit BodyAddTor que( veh- >chassi sBody,
-torque * haxis[O0],
-torque * haxis[1],
-torque * haxis[2]);
To accelerate the vehicle forward, a torque is directly applied to the wheel body around the wheel’s hinge
axis. For each torque applied to a wheel, an equal but opposite torque is applied to the chassis. Although it is
more correct to apply this opposing torque, it can be omitted. This can help if the vehicle has a tendency to
tip over backwards under acceleration. The torque is directly proportional to the throttle input. This is very
simplistic and will cause the vehicle to accelerate indefinitely. A better engine model would have the torque
as a function of the angular velocity of the wheels and tending to zero as the speed increases. Build and run.

File: vehicle.c
Function: Updat eVehi cl eControl s()
Identifier: PASTE_11

el se

/* Apply brakes */

MeReal naxBrakeTor que = veh->brakel nput *500;

Mt Car Wheel Set Hi ngeLi i t edFor ceMot or (veh- >wheel Joint[i], O,

maxBr akeTor que) ;
}

The vehicle could be slowed in a similar way to acceleration by applying a torque directly to the wheels. It is
more convenient, however, to use a limited force motor with a desired angular velocity of zero around the
hinge axis. This eliminates the problem of the braking torque causing the angular velocity to oscillate around
zero. It also makes it easy to hold the vehicle stationary on a slope. Similarly, the limited force motor could be
used to accelerate the vehicle and would act as a direct speed control rather than acceleration control. The
braking control can be pasted in 2 places for braking on the front wheels, back wheels or both. Build and run.

File: vehicle.c
Function: Updat eVehi cl eCont r ol s()

Quadbike Tutorial « 117 '




MathEngine Karma User Guide

Identifier: PASTE_12

/* Front wheel do the steering proportional gap (radians). */
theta = Mt Car Wheel Get St eeri ngAngl e(veh->wheel Joint[i]);

desired_vel = veh->steeringlnput * width + theta;
desired_vel = max(-pgap, mn(desired_vel, pgap));

Mt Car Wheel Set St eeri ngLi mi t edFor ceMot or (veh- >wheel Joint[i],
maxSpeed * desired_vel, maxForce);

The steering control also uses a limited force motor on the suspension joint although this time around the
vertical steering axis. The desired wheel angle is proportional to the steering input value. Since the limited
force motor will control the steering rate, a required speed is derived from the difference between the desired
wheel steer angle and the wheel’s current steer angle. It is possible to set the wheel angle directly by
animating the body manually but this is actually more complicated since the angular velocity vector and the
joint fast spin axis need to be rotated manually with the body. Build and run.

File: vehicle.c
Function: Updat eVehi cl eControl s()
Identifier: PASTE_13

Mt Li mit Control | er (Mt Hi ngeGet Li m t (veh->hBar Joint), -veh->steeringlnput* w dth,
pgap, nmaxSpeed, maxForce);

A limit controller is used to steer the handlebars. This is very similar to using a limited force motor although
the parameters are passed in one function call. It is used here to demonstrate the different methods of
controlling joints. The handlebars will act as the actuation mechanism for the rider’s arms. Build and run.

File: main.c
Function: I nitialiseMaterial s()
Identifier: PASTE_14

Mst Bri dgeSet Per Cont act CB( bri dge, wheel Mat, groundMat, Wheel G- oundCB);

Finally, to modify the exact behavior of the contacts between the wheels and the ground, an application level
callback function is implemented for the interaction between the wheel material and the ground material.

File: vehicle.c
Function: Wheel Gr oundCB()
Identifier: PASTE_15

body = Mt Cont act Get Body(dynC, 0);
/* terrain has no body so wheel nust be body 0 */

w = (Mt Car Wheel | D) Mit BodyGet User Dat a( body) ;
i{f(V\d)
/* Create principal friction axis (normal x hinge_axis). */

Mt Car Wheel Get H ngeAxi s(wj, haxis);
Mt Cont act Get Nor mal (dynC, nornal);

MeVect or 3Cross(dir, normal, haxis);
MeVect or 3Nor mal i ze(dir);

Mit Cont act Set Di recti on(dynC, dir[0], dir[1], dir[2]);

/* Increase lateral slip with increasing canber angle */
parans = Mt Cont act Get Par ans(dynC) ;

slip = 0.001f + MeFabs(MeVect or3Dot (normal, haxis));

Mt Cont act Par ansSet Secondar ySl i p(parans, slip);

}
The callback function performs two tasks. Firstly, it aligns the contact direction with the direction in which the
wheel is rolling. This is not essential if the primary and secondary friction parameters are similar but this is
not often the case. Secondly, the lateral slip parameter is increased with increasing camber of the wheel.
This means that the wheel will slip sideways more as the roll angle between it and the ground increases. This
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helps to reduce the tendency of the vehicle to tip over when cornering. The callback function could also be
used to adjust the friction parameters depending on other factors such as localized terrain texture etc. Build
and run.

Creating a Rider for the Vehicle

The process for creating the rider follows the same steps as creating the vehicle. The bodies and collision
models are created and then connected together with various joints. Joint axes and limits are used to give
posture. The controls for the rider adjust some of the joint limits to add additional articulation.

File: rider.c
Function: I ni ti al i seRi der ()
Identifier: PASTE_16
for(i = 0; i < NUM_LIMS; i++)
{
rider->linbBody[i] = MitBodyCreate(world);
MeVect or 3Add( pos, startPos, rider->data->linbPos[i]);
Mit Body Set Posi tion(rider->linmbBody[i], pos[0], pos[1],
MeMat ri x3Fr onEul er Angl es(R, rider- >data- >l i rTbAng[ i1[10],

rider->data->linbAng[i][1],
ri der->data->linbAng[i][2]);

pos[2]);

Mit BodySet Ori entation(rider->linbBody[i], R);
Mt BodyEnabl e(ri der->l i nbBody[i]);
[* Collision */
rider->linmbGeonfi] = McdBoxCreate(framework,
ri der->dat a- >l i nbDi
ri der->dat a- >l i nbDi
ri der->dat a- >l i nbDi
rider->liCMi] = McdMdel Create(rider->linbGeon i
McdModel Set Body(rider->limbCMi], rider->linbBodyli
McdSpacel nsert Mobdel (space, ri der->l i mCMil);

/* Disable collision between all the various |inbs */
for(j =i-1; j >=0; j--)

McdSpaceDi sabl ePair(rider->linmbCMi], rider->linbCMj]);
/* Disable collision rider and vehicle */
McdSpaceDi sabl ePai r (rider->linbCMi], quadBike.chassisCV;
for() =0; j < 4; j++)
McdSpaceDi sabl ePair(rider->inbCMi], quadBike.wheel CMj]);

}

All the initial positions and orientations are stored in the data structure. In this application the rider’s right and
left lower limbs are combined for simplicity. If the rider was intended to fall off the vehicle then it would
probably be necessary to make the legs independent. Each limb uses a box geometry to represent the
collision surface. The collision between every body part and between each body part and the components of
the vehicle is disabled.

File: rider.c
Function: I ni ti al i seRi der ()
Identifier: PASTE_17
Eor(i =0; i < NUMJANTS; i++)

/* Determine joint bodies */
bodyl = rider->linbBody[rider->data->jointBodies[i][0]];

i f(rider->data->jointBodies[i][1l] == -1)
i f(rider->data->jointBodies[i][0] == LOAER_LEGS)

body2 = quadBi ke. chassi sBody;
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} else {
body2 = quadBi ke. hBar Body;

} else {
body2 = rider->linbBody[rider->data->jointBodies[i][1]];

/* Create appropriate joint */
i f(rider->data->i sHinge & 1<<i)

hi nge = Mit H ngeCreate(worl d);

Mit H ngeSet Bodi es( hi nge, bodyl, body?2);

MeVect or 3Add( pos, startPos, rider->data->jointPos[i]);

Mit H ngeSet Posi ti on(hi nge, pos[0], pos[1l], pos[2]);

Mit H ngeSet Axi s( hi nge,
rider->data->jointAxis[i][0],
rider->data->jointAxis[i][1],
rider->data->jointAxis[i][2]);

rider->joint[i] = MtH ngeQuaConstrai nt (hinge);

/* Add hinge joint linmt code here */
/* PASTE_18 */

el se

bsj = Mt BSJoi nt Create(worl d);

Mdt BSJoi nt Set Bodi es(bsj, bodyl, body?2);

MeVect or 3Add( pos, startPos, rider->data->jointPos[i]);
Mt BSJoi nt Set Posi ti on(bsj, pos[0], pos[1], pos[2]);

rider->joint[i] = Mt BSJoi nt QuaConstraint (bsj);
}
Mit Const rai nt Enabl e(rider->joint[i]);

The rider uses both ball and socket joints and hinge joints. The hinge joints are used where the motion needs
to be more controlled. The shoulder uses a hinge with the axis rotated forwards slightly. This causes the
elbow to move outwards as the arm is moved back. The axis of the hinge in the riders hips is aligned front to
back so that the rider has some lateral flexibility. It is important not to over constrain the system by using too
many hinges. For instance, a hinge could not be simultaneously used in the elbow and shoulder because the
arm would not have enough flexibility to move when the wrist is jointed to the handlebars. Build and run.

File: rider.c
Function: I niti al i seRi der ()
Identifier: PASTE_18

i f(rider->data->jointParanfi][0])
{
limt = MitH ngeGetLimt(hinge);
Mit Si ngl eLimitSet Stiffness(MitLimtGetUpperLimt(limt),
rider->data->jointParanfi][0]);
Mit Si ngl eLimtSetStiffness(MitLimtGetLowerLimt(limt),
rider->data->jointParanfi][0]);
Mt Si ngl eLi mi t Set Danpi ng( Mdt Li m t Get UpperLimt(limt),
rider->data->jointParanfi][1]);
Mt Si ngl eLi mi t Set Danpi ng( Mt Li m t Get LowerLimt(limt),
rider->data->jointParanfi][1]);
MitLimtActivateLimts(limt, 1);
}

To give the character the correct posture, the limits are activated on each of the hinge joints. If the upper and
lower limits have the same value, the hinge will always return to that position. Since the character is
initialized in the correct posture, the value for upper and lower limits can be left as zero. The stiffness and
damping of each limit is set to give the desired compliance of the rider. Build and run.

File: rider.c
Function: Updat eRi der Cont r ol s()
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Identifier: PASTE_19

/* Make the crouch angle proportional to forward velocity */
Mt BodyGet Li near Vel oci t y( quadBi ke. chassi sBody, vel);

XAxi s = (MeVect or 3Pt r) Mit BodyGet Tr ansf or mPt r (quadBi ke. chassi sBody) ;
speed = max(0, MeVector3Dot (xAxis, vel));

angl e = speed * 0.035f;

angl e = m n(angl e, maxAng) ;

angl e = -quadBi ke. steeri ngl nput * angl e;

/* Move hip joint limt to force rider to lean into turn */

limt = MitH ngeGetLinmt(MtConstraintDCastH nge(rider->joint[H PS]));
Mt Si ngl eLi mi t Set Stop(MltLimtGetLowerLimt(linmt), angle);

Mdt Si ngl eLi mi t Set Stop(MitLi mtGet UpperLimt(linmt), angle);

/* Force rider to bend knees to crouch | ower */
angl e = MeFabs(angl e);

limt = MitH ngeCGetLimt(MtConstraintDCastH nge(rider->joint[KNEES]));
Mt Si ngl eLi mi t Set Stop(MJtLi mitGetLowerLimt(linmt), angle*2);
Mt Si ngl eLi mi t Set Stop(MItLi mtGet UpperLimt(linmt), angle*2);

limt = MitH ngeCetLimt(MtConstraint DCast

Mdt Si ngl eLi mi t Set St op( Mdt Li mi t Get Lower Li mi t

Mdt Si ngl eLi mi t Set St op( Mdt Li mi t Get UpperLimt(
The rider will passively move in response to the accelerations of the vehicle and the movement of the
handlebars. To make the character look more involved with riding, the hinge limits can be actively controlled.
Here the riders posture is altered as a function of the steering input and vehicle speed. By changing the
upper and lower limit values for the knees, ankles and hips, the rider can be made to actively crouch and
lean as the vehicle maneuvers. Build and run. You may at this point want to use a heightfield terrain rather
than a flat ground plane to study the response of the rider moving over undulating terrain. This can be done
by defining USE_TRI _LI STas 1in Terrai n. c.

H
(
(
H
(

mt), -angle*l.2);

nge(rider->joi nt[ ANKLES]));
i
imt), -angle*l.2);
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Appendix A - Default Values

The following files contain the Karma default settings:

Precision
MdtDefaults.h, MePrecision.h

World
MdtWorld.c

Bodies
MdtBody.c

Joints

MdtAngular3.c, MdtBsJoint.c, MdtCarWheel.c, MdtConeLimit.c,MdtFixedPath.c, MdtHinge.c, MdtLimit.c,
MdtLinearl.c, MdtLinear2.c, MdtPrismatic.c, MdtRPROJoint.c, MdtSpring.c, MdtUniversal.c

Contacts
MdtConstraint.c, MdtContact.c, MdtContactGroup.c, MdtContactParams.c

Universe

MstUniverse.c

Precision Values
MEINFINITY 3.402823466e+38F

World Properties
AutoDisable 1 S
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AutoDisableVelocityThreshold
AutoDisableAngularVelocityThreshold
AutoDisableAccelerationThreshold
AutoDisableAngularAccelerationThreshold
AutoDisableAliveWindow

MaxMatrixSize

DebugDrawOptions

Gravity

Epsilon

Gamma

MinSafeTime

0.02
0.001
0.5
0.002
0.2
MEINFINITY
0
(0,0,0)
0.01
0.2
0.001

ms

-1
rad s
ms

-2
rad s

kg~

-1

Although y scales inversely with time, currently its value is given in frames, not seconds. Thus if you have a
varying frame rate, you should adjust the value of y each frame to ensure uniform relaxation.

Body Properties
Mass
InertiaTensor
LinearDamping
AngularDamping
FastSpinAxis

m

0.4% ml? = (3x3 ldentity Matrix)

0
0
(0,1,0)

where m is the mass scale parameter to MdtWorldCreate and | is the length scale parameter

Joints

Joint Limit:
Position
Restitution
Stiffness
Damping
Powered
Desired velocity
Max force

Angular2:
RotationlsEnabled
axisl
axis2
ref_axisl
ref_axis2
stiffness
damping

Angular3:
RotationlsEnabled
stiffness
damping

Ball and Socket:

0
1
MEINFINITY
0

0]
0]
0]

0

(1,0,0)
(1,0,0)
(0,1,0)
(0,1,0)
MEINFINITY
MEINFINITY

0
MEINFINITY
MEINFINITY
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Position (in both bodies' reference frame) (0,0,0)
Primary axis (in both bodies' reference frame) (1,0,0)

Orthogonal axis (in both bodies' reference frame) (0,1,0)

Car Wheel:
Position (0,0,0)
IsSteeringLocked (whether the wheel is steered) 0O
Steering
Axis (0,0,1)
MotorMaxForce 1le9
MotorDesiredVelocity 0
Hinge
Axis (0,1,0)
MotorMaxForce 0
MotorDesiredVelocity 0
Suspension
HighLimit 1e9
LowLimit -1e9
Reference 0]
LimitSoftness 0
Kp (Stiffness coeffiecient) 0
Kd (Damping coefficient) 0
Cone Limit:
Position (0,0,0)
PrimaryAxis (1,0,0)
SecondaryAxis (0,1,0)
Stiffness MEINFINITY
Damping MEINFINITY
Hinge
Position (0,0,0)
AXis (1,0,0)
Full Constraint
Position (0,0,0)
relative orientation (0,0,0)
Fixed Path
Position (0,0,0)
Velocity (0,0,0)
Linearl
Position (0,0,0)
Linear2
Position (0,0,0)
Direction (0,0,0)
Prismatic
sliding axis (in body O reference frame) (0,1,0)
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body 0 initial position (in inertial reference frame) (0,0,0)

Spring
posl
pos2

Universal Joint
bodyl = body2
PrimaryAxis

SecondaryAxis

Contacts

Contact:
Position
Normal
FrictionDirection
Penetration

Contact Group:
Position
Normal
friction direction
penetration

Contact Parameters:
FrictionType
PrimaryFrictionModel
PrimaryFriction
PrimaryFrictionCoefficient
PrimarySlip
PrimarySlide
SecondaryFrictionModel
SecondaryFriction
SecondaryFrictionCoefficient
SecondarySlip
SecondarySlide
Restitution
VelocityThreshold
Softness

Stickiness

MstUniverseDefaultSizes
dynamicBodiesMaxCount
dynamicConstraintsMaxCount
collisionUserGeometryTypesMaxCount
collisionModelsMaxCount
collisionPairsMaxCount

collisionGeometrylnstancesMaxCount

(0,0,0)
(0,0,0)

(1,0,0)
(0,1,0)

(0,0,0)
(0,1,0)
(0,1,0)

(0,0,0)
(0,1,0)
(0,1,0)

MdtContactTypeFrictionZero
MdtFrictionModelBox
MEINFINITY

0]

0

0

MdtFrictionModelBox
MEINFINITY

0

100
500

100
500
100
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materialsMaxCount 10
lengthScale

massScale
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VAL

marhengine

Appendix B - The Karma Viewer

The Karma Viewer (MeViewer) provides a set of functions designed to provide Karma developers with the
basic rendering functionality required to demonstrate their simulation code. It is a basic cross platform
wrapper around the OpenGL and Direct 3D libraries. It is only intended to be used for test code or prototyping,
allowing basic display of, and interaction with, 3D scenes. MePr of i | e and MeConmandLi ne will be used
together with MeViewer but are not covered. The source files and header files for these can be found in

...\ net ool ki t\src\conponent s\ Med obal s\src and ...\ netool ki t\incl ude respectively.
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Using the Viewer in an Application

Let's look at the Rai nbowChai n. ¢ sample program from Karma. It provides a good example of how you
can use the Viewer in your own programs.

First Steps

You need first to include MeVi ewer . h and to declare a rendering context (a structure that holds the state of
the viewer) of type RRender , which is traditionally named r c. Then the application declares pointers to the
two graphics structures of type RG- aphi ¢ that will appear in the RainbowChain tutorial: a ball and a plane.

#i ncl ude "MeVi ewer. h"

/* Render context */
RRender *rc;

/* graphics */

RGr aphi ¢ *sphered NBALLS];
RG aphi ¢ *pl aneG

Initializing the Renderer

In the main routine of RainbowChain, we pick up the renderer type (-gl , -d3d, -nul | , - bench, -profil e

) from the command line:

/* Initialise rendering attributes. */

MeCommandLi neCpt i ons *opti ons;
opti ons = MeConmandLi neOpti onsCreate(argc, argv);
rc = RRender Cont ext Create(options, 0, 1);
MeConmmendLi neQpt i onsDest roy(opti ons);
if (!'rc)

return 1;

Then we initialize the camera in polar coordinates:
RCaner aRot at eEl evation(rc, (MeReal)1.1);
RCaner aRot at eAngl e(rc, (MeReal)O0.2);
RCaner aZzoon(rc, 10);
Add a visual performance bar. This will show time taken up by collisions, dynamics and rendering:
RPer f or manceBar Creat e(rc);
Create the help system:

/* Create your help array. */
char *help[3] =

"$ACTI ONL - toggle options nenu",
"$ACTION2 - reset",
"$MOUSE - apply nouse force"

1
RRender Cr eat eUser Hel p(rc, hel p, 1);
RRender Toggl eUser Hel p(rc);

And assign the keyboard call-back function to resest objects on pressing return:
RRender Set Acti onNCal | Back(rc, 2, Reset, 0);

Creating the Graphics

Finally, we create the graphical objects. Spheres form the chain and a plane forms the floor. A pointer to
each object’s collision model transformation matrix is used to link the graphic with the collision model.
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for(i=0; i<NBALLS; i++)
{

/* Convert Hue Saturation Value to Red Green Blue. */
MeHSVt oRGB( ((MeReal )i/ ( MeReal ) NBALLS) *360, 1, 1, color);
spherei] = RG aphi cSphereCreate(rc, ball Radius, color,
McdModel Get TransfornPtr(ball[i]));

}

color[0] = color[1] = color[2] = color[3] = 1;
pl aneG = RG aphi ¢cG oundPl aneCreate(rc, 24, 2, color, 0);
RG aphi cSet Texture(rc, planeG "checkerboard");

Running the Simulation

Then we call RRun() to run the simulation and render the graphics.
RRun(rc, tick, 0);

RRun() controls the event loop (the main loop) for the simulation. t i ck is a function which is called before
rendering each frame, and in this application contains the code which updates the positions of each ball in
the chain using Karma dynamics.

Terminating the Program

Calling RRun() sends the viewer into a loop, which—depending on your platform and your underlying
graphics package—may not return. For safety, assume that your program will not return from RRun() .

To stop the program, the user presses <Esc> or clicks the close button, which results in a call to exi t (),
terminating your program. The effect is that no code placed after RRun() can execute.

So if you have any cleanup to do before your program terminates, put it in a function and register that
function with at exi t () . This way MeViewer will call that function before terminating the program. For
example, here is a typical cl eanup() function used in Karma:

voi d MEAPI _CDECL cl eanup(voi d)
RRender Cont ext Destroy(rc);
}
Register cleanup with at exi t () before calling RRun() :
atexi t (cl eanup);

RRun(rc, tick);
/* No code placed after here will ever execute */
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Render Contexts

A Render Context is a RRender structure (see the MeVi ewer Types. h header file), that holds the state of
the viewer. Because there is no global render context, nearly all API calls will require a valid RRender * as
their first parameter . Therefore the first task of an application using MeViewer is to create a render context.

RRender * MEAPI RRender Cont ext Creat e MeConmandLi neOpti ons* opti ons,
MeConmandLi neCpt i ons* overri deopti ons,
MeBool eat);

creates a new render context, fills the RRender with default values and calls Rl ni t in platform-dependent
code. The return value is zero if creation or Rl ni t fails. The opt i ons argument is an input from the
command line, and options specified there are overridden by those specified in over ri deopt i ons.

i nt MEAPI RRender Cont ext Destroy (RRender *rc);
cleans up and frees a render context.

void MEAPI RRenderQuit (RRender *rc);
tells the back-end to quit the r ¢ render context next frame.
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Render Lists

Graphics objects can be either 2D or 3D. When the renderer draws a frame, it walks through a linked lists for
each type. The lists are of RGr aphi ¢ objects. RRender holds the first element of each list, and the

RG aphi cs themselves point to the next in the list:
voi d MEAPI RG aphi cAddToLi st ( RRender *rc,
RGraphic *rg,
int 1s2D)
Puts RGr aphi ¢ into render-list in render context r c. The argument i 2D determines whether r g is
added to the 3D or 2D list
If a RGr aphi ¢ object has been created, but is not in a list, it will not be rendered. This provides a mechanism
for disabling objects:
voi d MEAPI RG aphi cRenoveFr onli st ( RRender *rc,
RG aphic *rg,
int 1s2D)
Removes RG aphi ¢ from render-list. The argument i $2D specifies whether to look in 2D or 3D list.
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Creating Primitives

In the following:
 the variable col or is the RGBA color of the object
e matri x is a pointer to the object's transformation matrix

» the argument r ¢ is the render context into whose (2D, 3D) list the resulting RGr aphi c is placed. The
function returns a pointer to the resulting RGr aphi ¢, or O for failure.

The primitive creation functions follow.

RGr aphi ¢c* MEAPI RG aphi c2DRect angl eCreate (RRender *rc, AcneReal x, AcneReal v,
AcmeReal width, AcneReal height, const float color[4]);

creates a rectangle where

» X andy are the x coordinate of the left edge of the rectangle and the y coordinate of the top edge of the
rectangle respectively

* Wi dt h and hei ght are the x and y dimensions of the rectangle

RG aphi ¢c* MEAPI RG aphi cG oundPl aneCreate (RRender *rc, AcneReal |ength,
int triangles, const float color[4], AcneReal y_pos);

creates a ground-plane that is a square in x, z, and where
* | engt his the length of the side of the square
« triangl es specifies the number of triangles per side of the square
* y_pos sets the y position of the square

RGr aphi ¢c* MEAPI RG aphi cBoxCreate (RRender *rc, AcnmeReal x, AcneReal vy,
AcneReal z, const float color[4], MeMatrix4Ptr matriXx);

creates a box of width x, height y and depth z.

RGr aphi ¢c* MEAPI RG aphi cConeCreate (RRender *rc, AcneReal radius, AcneReal uheight,
AcmeReal | height, const float color[4], MeMatrix4Ptr matrix);

creates a cone where
» radi us is the radius of the base of the cone
» uhei ght is the length along z from the origin to the apex
» | hei ght is the length along z from the origin to the base

RG aphi ¢ * MEAPI RG aphi cCylinderCreate (RRender *rc, AcneReal radius,
AcneReal height, const float color[4], MeMatrix4Ptr matrix);

creates a cylinder where
» radi us is the radius of the cylinder
» hei ght is length along z of the cylinder
» The origin is located at the half height

RNat i veLi ne* MEAPI RNLi neCreat e( RRender*const rc, const AcneReal start[3],
const AcnmeReal end[3], const AcneReal color[4],
const MeVector4 *const matrix);

creates a native line where

e start[3] is the position vector of the line origin
e end[3] is the position vector of the line end
Note that native lines are not supported on the PlayStation®2, hence the following function should be used.

RGraphic * MEAPI RG aphi cLi neCreate (RRender *rc, AcneReal *origin, AcneReal *end,
const float color[4], MeMatrix4Ptr matrix);

creates a line where
* originisthe (x,Y, z) start location of the line
« endisthe (x,y, z) end location of the line
Note that native line support also exists in Karma.
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RG aphi ¢ * MEAPI RG aphi cSphereCreate (RRender *rc, AcneReal radius,
const float color[4], MeMatrix4Ptr matrix);

creates a sphere where r adi us is the sphere radius.

RG aphi c * MEAPI RG aphi cSquareCreate (RRender *rc, AcneReal side,
const float color[4], MeMatrix4Ptr matrix);

creates a square, where si de is the square side length.

RG aphi ¢ * MEAPI RG aphi cTorusCreate (RRender *rc, AcneReal innerRadius,
AcneReal outerRadius, const float color[4], MeMatrix4Ptr natrix);

creates a torus where r adi us is the outer radius of the torus.

RG aphi c * MEAPI RG aphi cText Create (RRender *rc, char *text, AcmeReal x,
AcmeReal y, const float color[4]);

creates a RGr aphi ¢ representing text.
» “font” as the texture

e text_inisthe textto display (this is parsed first, allowing for variable substitution to take place in
RParseText)

* X andy represent the respective x coordinate of the left edge of the text and the y coordinate of the top
edge of the text

RG aphi ¢ * MEAPI RG aphi cFrustunCreate (RRender *rc, AcneReal bottonRadius,
AcnmeReal topRadi us, AcneReal bottom AcneReal top,
int sides, const float color[4], MeMatrix4Ptr matrix);

creates an arbitrary frustum where

* bottonRadi us and t opRadi us represent the radius of the approximation to a circle that forms the
bottom and the top of the frustum respectively

« bottomandtop represent the z coordinates, in the frustum's reference frame, of the bottom and the
top of the frustum respectively

< si des is the number of sides of the regular polygon at each end of the frustum
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Creating Objects

The platform-specific section of MeViewer only displays data in the format discussed in the later section
discussing Geometry Data Formats, which holds lists of triangles, grouped into objects each with associated
color and texture properties. The format is based around the RG aphi ¢ structure. MeViewer provides
functions to create RG aphi ¢ structures representing a number of primitive objects, and to create empty
structures for application defined objects.

To create an RG- aphi ¢ object from an object file:

RG aphi c* MEAPI RG aphicCreate (RRender *rc, char *filenanme, AcnmeReal xScal e,
AcneReal yScal e, AcneReal zScal e, const AcneReal col or[4],
MeMatri x4Ptr matrix, int is2D, int bKeepAspectRatio);
Creates a RGr aphi ¢ from object file. A new RGr aphi c is created using the parameters passed. The
value f i | enane specifies the object geometry file.The values xScal e, yScal e and zScal e specifies
the x, y and z scaling factor respectively. The value col or specifies the object RGBA color. The value
mat ri x is the pointer to the associated transformation matrix. The value i s2D indicates if object is to be
put in 2D render-list And finally, the value bKeepAspect Rat i 0 indicates if the aspect ratio is to be
preserved when object is normalized

Or you may want to create an empty one:

RGraphi ¢ *MEAPI RGraphi cCreateEnpty (int numVertices);

Allocates memory for RGr aphi c. The nunVer t i ces argument specifies how many vertices in RGr aphi ¢
and should be multiple of 3. Fills in nunVer ti ces and pointers in RGr aphi c. This function returns a
pointer to the resulting RGr aphi c, or O if it fails to do so.

When you have created a RGr aphi ¢ object, you may delete or destroy it using:

voi d MEAPI RG aphi cDestroy (RG aphic *rg);
Frees memory allocated for RGr aphi c. The argument r g is the RGr aphi ¢ to destroy. This function also
frees memory allocated for the associated RObj ect Header and vertex list.

voi d MEAPI RG aphi cDel ete (RRender *rc, RGaphic *rg, int is2D);

Removes RG aphi ¢ from list and then frees up memory. Hence, there is so no need to call

RG aphi cDest r oy afterwards. The arguments r ¢ and r g are the render context that the graphic is
associated with, and the graphic to delete respectively. The i s2Dargument queries whether the graphic is in
the 2D list.
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Manipulating RGraphic Objects

voi d MEAPI RNLi neMoveEnds( RNati veLi ne*const |ine,
const AcrmeReal start[3], const AcneReal end[3] );

changes the native line position to the new positions specified in start[3] and end[ 3].

i nt MEAPI RG aphi cLi neMoveEnds (RGraphic *l1ineG AcneReal *origin, AcneReal *end);

moves the ends of an RG aphi c line. | i neGis a pointer to the RGraphic representing a line, ori gi nis a
three-vector containing the co-ordinates of the start of the line and end is the three-vector containing the co-
ordinates of the end of the line. This function returns 0 for success or 1 for failure (an MeVar ni ng will be
printed before returning in this case).

voi d MEAPI RGaphi cSet TransfornPtr (RG aphic *g, MeMatrix4Ptr matrix);

sets the transform pointer for an RGr aphi c. The argument g is the RGr aphi ¢ in question and mat ri x is
the transformation matrix to assign to g.
voi d MEAPI RG aphi cSet Col or ( RGaphic *g,
const float color[4] )
Sets the color of an RGr aphi c. The argument g is the RGr aphi ¢ in question and col or is the RGBA color
to assign to the RGr aphi c. Note that this sets the ambient and diffuse components of the color and that the
emissive and specular components are zeroed.
voi d MEAPI RGraphi cGet Col or ( RGaphic *g,
float color[4] )
Gets the color of an RGr aphi c. The argument g is the RGr aphi ¢ in question and col or is the returned
ambient RGBA color of the RG aphi ¢
voi d MEAPI RConvertTri StripToTriList ( RGaphic* rg,
RMbj ect Vert ex* strips,
int* stripSize,
int* stripStart,
int nunBtrips )
Converts a set of triangle strips to a list of triangles. Useful for back ends that do not support triangle strips,
converting convex hulls and meshes to triangle lists. st ri ps is a pointer to the first vertex of the first strip to
be converted. All vertices for each strip follow in one contiguous chunk. The argument st ri pSi ze is an
array whose it element contains the number of vertices in the ith strip, st ri pSt art is an array whose ith
element contains the index in’strips' of the first vertex of the it" strip and nunst r i ps is the number of strips
to process.
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Menu System

The Viewer implements a simple menu system to simplify the use of an MeViewer2 application.
Rvenu* NMEAPI RMenuCreate (RRender* rc, const char* name);

Create a new on-screen menu. The argument r € is the render context that will display the menu and
nane is the title of the new menu. This function returns a pointer to the new menu.

voi d MEAPI RMenuDestroy (RMenu* rnj;
Destroy a menu. The argument r mis the menu to destroy.

voi d MEAPI RRender Set Def aul t Menu ( RRender *rc, RMenu* menu);

Make nenu the default menu in a given render context. This means that this menu will be the one that
appears when the menu key is pressed. The argument r ¢ is the render context in which the menu is to be
made the default.

void MEAPI RMenuDi splay (RMenu* rnj;

Display a menu. The argument r mis the menu to display. Note that the render context in which this menu will
be displayed is found out from rm.
voi d MEAPI RMenuAddToggl eEntry (RMenu* rm const char * naneg,
RMenuToggl eCal | back func, MeBool defaultVal ue);
Add a “toggle' entry to a menu. This is an entry type that has two states, on and off, which are toggled by
pressing the button when the entry is highlighted. The callback is called with the new value for each change
of state.

The argument r mis the menu to which the entry will be added, name is the text to be displayed for this menu
entry and f unc is the function that will be called when this menu entry is selected. The value
def aul t Val ue is the initial value for this toggle when it is created
voi d MEAPI RMenuAddVal ueEntry (RMenu* rm const char * nane,

RvenuVal ueCal | back func, MeReal hi, MeReal | o,

MeReal increment, MeReal defaultValue);
Add a value entry to a menu. This is a menu entry type which provides a variable which can be modified by a
specified stepsize between a minimum and maximum value by pressing the appropriate buttons when the
entry is highlighted. The callback is called with the new value for each change of state.

The argument r mis the menu to which the entry will be added, narme is the text to be displayed for this menu
entry and f unc is the function to be called when the value is changed. The values hi and | o specify,
respectively, the maximum value and minimum value this entry can take. The value i ncr enment is the
amount by which the value is changed for each button press and def aul t Val ue is the starting point for the
value.

voi d MEAPI RMenuAddSubnenuEntry (RMenu* rm const char * nane, RMenu* subrenu);

Add a sub-menu entry to a menu. This is an entry type that, when selected, opens another menu. The
argument r mis the menu to which the entry will be added, nan® is the text that represents that menu entry
and submenu is the menu that will be displayed when this entry is selected.
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Help System

voi d MEAPI RRender Creat eUser Hel p (RRender *rc, char *help[], int arraySize);
builds the RGr aphi ¢ representing user help. The argument hel p is an array of null-terminated strings
and ar r aySi ze is the number of elements in the array.

voi d MEAPI RRender Toggl eUser Hel p (RRender *rc);

toggles the display of user help. It is called by platform specific back-end. Toggles the pause state of
associated render context. The rc argument is the render context for which to toggle the display of the help
text.

The text passed to this function will be put through RPar seText , and should make use of the variables that
this function substitutes to describe the controls for an application.

Appendix B - The Karma Viewer « 139 °



MathEngine Karma User Guide

The Camera

The camera position is set using spherical polar coordinates to specify a position relative a specified look-at
point. The spherical polar coordinates are the distance from the lookat point, the angle t het a on the xz-
plane anticlockwise from the z-axis, and elevation phi above the xz plane. Angles are specified in radians,
t het a in the range from -TTto +TTand phi in the range -TU2 to +TU2. Whilst these values are held in the
RRender structure, their values should not normally be set or read directly, but rather through the use of the
functions listed in this section.

voi d MEAPI RCaner aSet LookAt ( RRender *rc,
const AcneVector3 | ookAt )

This sets the look-at point to the specified world position | ook At . The camera position is automatically
updated.The argument r ¢ is the render context of the camera whose lookat to be set.

voi d MEAPI RCaner aGet LookAt ( RRender *rec,
AcmeVect or 3 caml ookat )

The look-at point in world coordinates of the r ¢ render context is stored into the canl ookat vector.

voi d MEAPI RCaner aSet Vi ew ( RRender *rc,
AcneReal di st,
AcnmeReal theta,
AcneReal phi )

This causes the camera's position to be calculated and updated from the RRender look-at point and the
coordinates supplied. The t het a and phi angles specify the angle and elevation in radians.

voi d MEAPI RCaneraCetPosition ( RRender *rc,
AcmeVect or 3 canpos )

The camera's position in world coordinates is calculated and stored into the canpos vector.

Camera Movement

MeViewer provides a selection of functions for moving the camera by an incremental distance or angle.
These are

e RCaneraZoom( RRender *rc, AcneReal dist );

* RCaneraPanX( RRender *rc, AcmeReal dist );

e RCaneraPanY( RRender *rc, AcneReal dist );

e RCaneraPanZ( RRender *rc, AcneReal dist );

* RCaner aRot at eAngl e( RRender *rc, AcneReal d_theta );
e RCaner aRot at eEl evati on( RRender *rc, AcneReal d_phi );

The argument r ¢ is the render context whose camera is to be manipulated, di st is the displacement added
to current camera distance, and d_t het a and d_phi are the two rotation angles in spherical coordinates.
Note that these functions will not allow the camera to get closer than 0. 01f from look-at. For more details,
consult MeVi ewer . h.

voi d RCaneraUpdat e( RRender *rc );

Calculates the camera position and updates the camera matrix in the RRender structure from the look-at
and spherical coordinates in that structure. The argument r ¢ is the render context whose camera is to be
manipulated.

It effectively synchronizes the various camera variables. It does not need to be called after using the other
camera functions detailed in this section, but if any values are altered directly it should be called in order that
the changes take effect.
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Lighting

The number and type of lights in a render context is fixed. They are
¢ One ambient light source
< Two directional light sources
¢ One point light
The functions RSwi t chLi ght On and RSwi t chLi ght O f switch lights on and off.

void RLightSwitchOn ( RRender *rc, RRenderlLight |ight)
void RLightSwitchO f ( RRender *rc, RRenderlLight Iight)

Ambient Lighting

The RGB value of the ambient light is held in the m_r gbAnbi ent Li ght Col or [ 3] member of RRender.
Any changes to this will take effect immediately (From the beginning of the next frame). The
m_bUseAnbi ent Li ght member of RRender can be set to zero to disable the ambient lighting.

Directional Lighting

RRender holds two RDi r ect Li ght structures (m Di rect Li ght 1 and m Di rect Li ght 2 ) that describe
the directional lights. These contain the RGB values of the ambient, specular and diffuse components of the
lights, as well as a 3-vector that defines the direction in which the light points. The light is active if the

m bUselLi ght member is non-zero.

If alterations to the RDi r ect Li ght structures are made after RRun has been called, then it is necessary to
setthe m bFor ceDi r ect Li ght 1Updat e orm bFor ceDi r ect Li ght 2Updat e members of RRender to a
non-zero value to instruct the renderer to update the lighting for the next frame.

Point Light

RRender holds a single RPoi nt Li ght structure, m Poi nt Li ght, that defines the point light. As with the
directional lights, this structure holds the RGB values and active state of the light. In place of direction, the 3-
vector m_Posi t i on[ 3] member defines the location of the light in world coordinates. The attenuation of the
light is controlled by the members m At t enuat i onConst ant, m Att enuati onLi near and

m At t enuat i onQuadrati c.

As with the directional lights, if alterations to m_Poi nt Li ght are made after RRun, then
m_bFor cePoi nt Li ght Updat e should be set to a non-zero value.
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Textures

The Viewer supports a maximum of 25 different textures. These should be 128X128X24bpp Windows . bnp
files. It also supports 256X256 images, but as these take 4 times the memory, one should take care to
reduce the number of textures used appropriately -- this will not be enforced automatically.

Every time a new texture is specified for an object, an identifier is created for it. The files are loaded when
RRun is called. This means that all textures should have an identifier before the call to RRun. See
RCr eat eText ur el D below for details

i nt MEAPI RRender TextureCreate ( RRender *rc,
char *fil enane )

Creates a Texture ID for f i | enanme. The argument r ¢ is the render context into which the texture will be
loaded and f i | enane is the name of the texture file to attempt to load. Returns an ID for a texture
filename or returns - 1 if all IDs are allocated.
i nt MEAPI RG aphi cSet Texture ( RRender *rc,

RG aphic *rg,

char *fil enane )
Sets the texture of a RGr aphi c. The argument f i | ename specifies the name of the texture (the filename
should not include the extension). Returns an ID for a texture filename or returns - 1 if all IDs are
allocated.

Disabling an object's texture

To disable an object's texture, set its texture ID to - 1. See Geometry Data Format on page 146 to find where
this is stored. It may also be achieved by calling RSet Text ur e with an invalid filename, but this will have a
larger overhead.
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Controls

The Viewer provides ten buttons and mouse analog controls to an application. The application can assign a
function to each of these using the following identifiers.

Button Press Controls

Exactly which key corresponds to which callback being called is determined by the platform-specific layer.
The call-back will be invoked only when the button is pressed, with the single argument specifying which
render context is calling the function.

The functions

voi d MEAPI RRender Set *Cal | Back (RRender *rc, RButtonPressCal |l Back func);
where the wildcard * is one of Up, Up2, Down, Down2, Left, Left2, Right, or Right2, sets the callback for *.
Each of these takes a RRender * render context and a function pointer as arguments. r ¢ is the render
context whose callback is to be set and f unc is the callback to assign to this button.

voi d MEAPI RRender Set Acti onNCal | Back (RRender *rc, int N,
RBut t onPressCal | Back func, void *userdata);

sets the call-back for the Nth Action. The value N represents the number of the callback that is to be set
(usually from 0 to 5). func is called when the specified action key is pressed.
voi d MEAPI RRender Set Acti onNKey (RRender* rc, const unsigned int N,
const char key);
assigns a key to a given Action Callback. The value Nrepresents the number of the callback to assign the
key to (usually in the range 2 to 5). The argument key is the key character to assign to the nth action
callback.

Analog Controls

The analog call-back will be called when the platform-defined analog control has changed position. The
arguments to the call-back specify the associated render context and the current (x, y) position of the
controller. The range of these position values is not specified, and so the call-back should only use the
difference in values between successive calls to be truly cross-platform compatible.

voi d MEAPI RRender Set MouseCal | Back (RRender *rc, RMouseCal |l Back func,

voi d *userdata);

sets the mouse callback where r ¢ is the render context whose callback is to be set and f unc is the callback
to assign to this button.
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Performance Measurement

RPer f or manceBar * MEAPI RPerformanceBarCreate ( RRender *rc )

This function will add a performance bar to the render context r c. It is the responsibility of the renderer to
update this bar with timings. This function returns a pointer to the newly created performance bar, or O if it
fails to do so.
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Utilities
voi d MEAPI RPar seText ( RRender *rc,

char *text_in,

char *text out,

i nt outbuffersize)
Parses text, substituting text for variables. Variables defined by $ followed by capitals or numbers are
substituted by text in RRender. The argument r ¢ is the rendering context source for strings to be
substituted. The argumentt ext _i n is the input string containing variables to be substituted and t ext _out
is the output string returned with text substituted for variables. The value out buf f er si ze represents the
amount of memory you allocated that is pointed to by t ext _out (i.e., maximum size of output string).

Any series of capital letters or numbers following a $ character will be considered a variable for substitution.
Those that are currently recognized are

e $UP $DOMWN $LEFT $RI GHT

e $UP2 $DONN2 $LEFT2 $RI GHT2

o $ACTI ON1 $ACTI ON2 $ACTI ON3 $ACTI ON4 $ACTI ONS
*  $APPNAME

When these are found, they are replaced by the text held in the RRender structure. This allows the platform-
specific renderer to provide names for the buttons and controls that are described in Controls on page 143.
The application should set the m_AppNanme member of RRender to a null-terminated string that names the
application.

Appendix B - The Karma Viewer « 145 °



MathEngine Karma User Guide

Geometry Data Format

As well as being able to render primitives, the viewer can display any object described by a triangle list.
These can be loaded from files, as covered in Object Geometry Files on page 148, or created at run-time by
using the structures detailed below.

An object in MeViewer consists of a single RObj ect Header structure, followed by a number of
RObj ect Vert ex structures, each of which describes a single vertex in the triangle list. The RGr aphi ¢
structure holds pointers to these as well as providing the linked-list mechanism.

Creating New Objects

The functions RG- aphi cCreat e() and RG aphi cCreat eEnpt y(), described in Creating Objects on
page 136, should be used to allocate the memory and fill in the RGr aphi ¢ structure for any object. It is
possible to create an object with any number of vertices, but it should be borne in mind that only multiples of
three will produce valid objects (remember that MeViewer uses triangle lists and not strips). Consisting of
merely a triangle list, an object is simply a set of triangles that share the same transformation matrix, color
and texture.

The RGr aphi ¢ structure holds pointers to the RObj ect Header and the first RObj ect Ver t ex in an object.
The first RObj ect Ver t ex structure must immediately follow the RObj ect Header in memory, and so the
pointer to it in RGr aphi c is purely for ease of programming vertex manipulation routines. The

m_pLWWat r i x member points to the transformation matrix for the object.

The member m_nMaxNunVer t i ces should always be set to the maximum number of vertices that have
memory allocated for them following the RObj ect Header . This is not necessarily the same as the number
of vertices in the object, which is held in the RObj ect Header . This allows objects with varying numbers of
vertices to be created with a minimum of memory allocation and copying.

Every graphical object in MeViewer has a single RObj ect Header . Its members are:

Member Description

m Matrix This is filled in by the renderer, but should be set to the identity matrix if
the m pLWvat r i x of the parent RG aphi c is null.

m nNunmVerti ces This indicates the number of RObjectVertex structures that make up the
object. It must be a multiple of three.

m nTexturel D The identifier for the object's texture. See Textures on page 142 for
details. If it is -1 then the object is not textured.

m bl sWr eFr ane If this is non-zero, the renderer is requested to draw the object in wire-
frame mode. This is not implemented on all platforms.

m_Col or Ambi ent The RGBA ambient color of the object.

m Col or Di f f use The RGBA diffuse color of the object.

m Col or Emi ssi ve | The RGBA emissive color of the object.

m_Col or Specul ar | The RGBA specular color of the object.

m_Specul ar Power | A value that indicates the shininess of the object.

RODbjectVertex

Each vertex in a MeViewer object consists of a position (m_X, m_Y, m Z), a normal ( m_NX; m_NY, m_NZ) and
a pair of texture coordinates (m_U, m V). These can be updated at any time, and the changes will be
reflected as soon as the next frame is drawn. Note that this does not apply to the PlayStation®2.
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The normal should have a modulus of 1. Each texture coordinate should be between 0 and 1.
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Object Geometry Files

The viewer can load geometries from .ASE files

File Format

RG aphi ¢ * MEAPI RG aphi cLoadASE (RRender *rc, char* filenane,
AcnmeReal xScal e, AcneReal yScal e, AcneReal zScale,
const float color[4], MeMatrix4Ptr matrix);

loads in ASE file and creates a graphics object for it. Material information from the ASE file is ignored
(although texture co-ords are used). The overall color and texture are set in the same way as all other
RGraphics.

« fil enane isthe ASE file to be loaded
» scal eFact or is the amount to scale graphics file by on loading
» col or is the RGBA colour of the graphic
e matri x apointer to the local-world transform for this graphic.
A pointer to the resulting RGraphic, or O for failure, is returned.
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Memory Allocation in Karma

Introduction

When developing games (especially for consoles) it is necessary to track and limit the amount of memory
used. All memory allocation in Karma goes through the MeMemoryAPI. This is a struct containing function
pointers to the functions used for memory allocation and freeing (see MeMemory.h and MeMemory.c in
MeGlobals for more information.

Object Code and Static Data

Static data is data that is known at compile time. The table below provides information about Karma memory
usage for the PlayStation®2. This applies to the Karma 1.2 build:

Library Name Function Code Static Source
Code
KB Data .
(KB) Provided
(KB)
libMcdCommon.a Farfield and collision math 19.5 2.2
library )
libMcdConvex.a Convex object collision 78.9 4.1
detection
libMcdConvexCreateHull.a | Utility for creating convex hull 270.1 5.4
from a mesh i
libMcdFrame.a Collision framework. Includes 31.5 4.2
farfield management
libMcdPrimitives.a Primitive (cylinder, sphere, 150.8 4.6
cube etc) collision detection.
libMdt.a Partitioning, freezing, 47.3 0.0
dynamics and accessors d
libMdtBcl.a Constraint library 58.1 0.3
libMdtKea.a Core dynamics solver 120.6 7.8
libMeApp.a Demo utilities eg mouse 9.1 0.0
picking i
libMeAssetDB.a Manages asset data structure 26.0 0.0
°
libMeAssetDBXMLIO.a Loads and Saves asset 21.0 0.0
database from and to XML i
libMeAssetFactory.a Instances asset database and | 8.9 0.0
turns asset structure into i
Karma object
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Library Name Function Code Static Source
Code
KB Data
(KB) Provided
(KB)
libMeGlobals.a Memory management, basic 52.9 0.3
maths functions etc *
libMeViewer.a Demo renderer 73.2 14
®
libMeXML.a XML read/write support 16.1 0.0
[ )
libMst.a Collision/dynamics bridge 7.1 0.0
[ )

Note that the PC version of Karma requires less than this although it usually has more memory at its
disposal. The consumer PlayStation®2 has 32MB of memory and the PlayStation®2 developer kits have
128MB of memory.

Dynamic Data

Dynamic data is data that is obtained from the fixed size memory pools containing static data. These static
pools are allocated once at the start. A memory pool is an area of memory allocated for the exclusive use of
a particular type of structure.

Most of the memory allocation occurs in Mdt, McdSpace and McdFrame. The source code supplied with
Karma allows the user to alter the way state is allocated and managed if required.

In the following examples, the variables that determine the amount of memory used are:
+ Maximum Number of objects, Nop;.
» Maximum Number of constraints, Negnst-
* Maximum Number of degrees of freedom constrained, Nqqs.

The table below shows some example values for these variables

Model Nobj Neonst Nof
Box impacting on the ground 1 4 12
A car (with suspension 1 4 12
and wheel friction)

Complex car (with suspension, 5 [chassis and 4 32
wheel friction and wheel rotation) four wheels]

Skeleton in mid air 11 10 30
Skeleton impacting on 11 21 41
frictionless ground
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Example - A Typical Car Simulation

A single car simulation requires approximately 40k of memory. As more cars are MdtWorldUpdatePartitions
takes the bodies and constraints and partitions them so that they can be simulated as separate groups that
are independant of the other groups. MdtPartitionOutput stores the partitions, simulating separate cars which
requires a lot less memory and is significantly faster than the simulation of both cars when non-partitioned.

Re-Routing Memory Management In Karma

Karmas default memory functions, that wrap malloc by default, can be changed if required. The user must
change the contents of the MeMemoryAPI struct before calling any Karma functions, then the users new
functions will be called instead. For example,

MeMenor yAPI . create = MyCreat eFunc;
nyWorl d = Mit Wor | dCr eat e( 100, 100) ;

will call MyCreateFunc to allocate memory for its pools.

MeGlobals contains the MePool and MeChunk functions that build on top of MeMemory, so the user can get
control of memory allocation higher up if required.

Setting Karma Memory Usage

When applying Karma to specific user applications, there are several ways that the user can set how and
where Karma uses its memory. The default implementation of Karma uses fixed size memory pools for both
bodies and constraints. This is a good starting point, though this may not be suitable for all user applications.
One of the reasons for supplying Karma source code is so that users can change it to cater for their specific
applications.

The memory allocation used for the MdtBody and MdtConstraint pools is set in the MePool utility located in
the MeGlobals library. The user can change this to connect it with a call to their own memory allocator,
instead of using the default fixed size pool.

Other memory is allocated in MdtWorldCreate that is based on the maximum number of bodies and
constraints that are ever going to exist. These include the MdtPartitionOutput struct, the MdtKeaConstraints
struct, and the body arrays passed to Kea. All of these structs are temporary storage used during
MdtWorldStep. Therefore, the user can change the Mdt source to allocate / resize them to the requisite size
each time-step.

The only part of Mst the user might wish to change is the MstMaterialTable. This contains an element for
every pair of materials. Each element contains the contact parameters for the pair of materials and the
callbacks for manually tweaking contact parameters. However, this is quite complicated to change. A simpler
solution would be to use one material with the existing material system and write contact-parameter setting
code instead of a per-pair or per-contact callback.

Memory Usage In Kea

MeChunk is a utility in MeGlobals for feeding Kea its workspace memory. The default size of MeChunk is
1024 bytes. When a system of constraints is passed to Kea to solve, a certain amount of memory is needed
to build the matrix. The utility function Mdt KeaMenor yRequi r ed returns how much memory will be required
from MeChunk. MeChunk increases to the required size each time if this is too small. It does so by doubling
the memory allocated, hence it is not required to change size very often because this slows down the frame
rate. If the user is experiencing problems because the frame rate drops in the first few frames due to
MeChuck resizing, MeChunk Set Aut 0 can be used to increase the initial value of MeChunk. The memory
used by Kea is only used during the solve to hold temporary data. Because a matrix is being formed, the
amount of memory required is related to the square of the number of constraint rows in a partition.
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Matrix Capping

Matrix capping allows the user to bound an upper limit on the amount of memory (and to some extent the
time) used by Karma.

If the dynamics matrix is small enough, the PlayStation®2 version of Kea can manipulate the matrix from
VUOMEM in microcode. As the matrix is symmetric, only half of it needs to be stored. As a result the
maximum matrix size that can entirely fit into VUOMEM is 36x36. Limiting matrices to this size has
considerable performance advantages. Kea can cope with larger matrix sizes, but needs to use a "matrix
blocking" strategy to buffer data in and out of the VUO memory. When the size is less than 36x36, the whole
problem fits in the memory at once, and it is possible to compute the solution very rapidly.

However, there is a trade-off. Matrix capping works by heuristically eliminating constraint rows. This means
that in some cases, noticeably "incorrect” behavior can result.

This can sometimes give the impression of unstable behavior in extreme cases, but the behavior is not due
to mathematical instability. For example, in Chair.elf if a wrecking ball is thrown at the chairs when matrix
capping is enabled small 'explosions’ could occur. If the user experiences difficulties, matrix capping can be
disabled. To do this, do not set the maximum matrix size (MdtWorldSetMaxMatrixSize).

If matrix capping is turned off, no unphysical behavior will occur, but the program will run more slowly.

Per Constraint Memory Used by Kea

Different types of constraints require different amounts of memory but typically the number of each type of
constraint required in a scene is not known at initialization. However, it is desirable to allocate memory at
initialization rather than in the game loop. With this in mind, we have chosen the following compromise. At
initialization time, the user specifies the maximum number of constraints required in total. The memory
allocated is the memory required by Karma’s largest constraint multiplied by the maximum number of
constraints. This memory is allocated in Mit Wor | dCr eat e. A consequence of this is that if the user has a
scene containing one hundred frictionless contacts, and a scene containing one hundred ball and socket
joints, the amount of memory requided by Mdt will be the same.
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Common Constraint Functions

Contacts and joints each have a dedicated set of functions to manage their properties. In order to describe
these functions while avoiding redundancy, an abstract, generic set of functions (that unless specified
otherwise is common to all joint structures) is first discussed. The specific type of joint will be identified with
the wildcard character * to replace one of the following identifiers:

« BSJoi nt, the Ball and Socket joint.

* Hi nge, the Hinge Joint.

e Prismatic, the Prismatic joint.

» Uni ver sal , the Universal joint.

* Angul ar 3, the Angular3 joint.

e Car \Weel , the Car Wheel Joint.

* Linear1, the Linearl joint.

e Linear 2, the Linear2 joint.

» Fi xedPat h, the Fixed-Path joint.

* RPRQJoI nt, the Relative-Position-Relative-Orientation joint.
» Skeletal, the Skeletal joint limit constraint.

» Spring6, a configurable compliance constraint.
e Spri ng, the Spring joint.

» Coneli m t, the Cone-Limit constraint.

« Cont act, a contact.

A constraint can only be created by using the appropriate Mit * Cr eat e() function for that constraint. A joint
must be created if an articulated body is needed. First create a Mit *1 D variable (called

joint _or_contact in the descriptions below) that will point to the Mt * structure where all information
about that joint will be stored. The function that creates a joint and returns a Mit *| D variable is:

Mit *| D MEAPI Mt *Create ( const MitWorldliD world )
This function creates a new joint or contact in the world. This should be followed with the

Mt * Set Bodi es ( const Mit*ID joint_or_contact,
const Mt Bodyl D bodyO,
const Mt Bodyl D bodyl )

function to assign bodies to the contact.

The Reset function is common to all joints and contacts, but the default values it resets to are specific to each
of them. See the individual constraint descriptions for details.

voi d MEAPI Mt *Reset ( const Mit*ID joint_or_contact )

Setj oi nt _or _cont act to its default value. Note that the bodies attached to the j oi nt _or _cont act will
have their parameters reset too.

When a joint or a contact is no longer needed, remove it using the following function:
voi d MEAPI Mt *Destr oy ( const MItBSJointlD joint_or_contact )
This function destroys the joint or contact named j oi nt _or _cont act .

When a constraint is created it needs to be enabled to be processed by the system. Conversely, disable a
constraint that is not required.

voi d MEAPI Mt *Enabl e ( const MitConstraintlD joint_or_contact )
Enable the simulation of j oi nt _or _cont act.

voi d MEAPI Mt *Di sabl e ( const MitConstraintlD joint_or_contact )
Disabling a constraint or joint stops it being simulated.

MeBool MEAPI Mt *| sEnabl ed ( const MitConstraintlD joint_or_contact )
Returns TRUE if the constraint is enadl ed.
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A function to obtain a Joint or Contact ID from a Constraint ID: i.e. the converse of Mit * QuaConst r ai nt .

Mt *1 D MEAPI Mt Constrai nt DCast *( const Mt ConstraintID cstrt )
Returns an Mt * | D from an MdtConstraintID. If this constraint is not of the expected * type, 0 is returned

Common Accessors

The Mit * Get Posi ti on function that accesses the position of the contact or joint in world coordinates, is
common to contact and all of the joints except Pri srmat i ¢ (does not exist) and Spr i ng (an additional
argument is needed):
voi d MEAPI Mt *Get Posi tion ( const MIt*ID joint_or_contact,
MeVect or 3 posVector )
The position vector of j oi nt _or _cont act is returned in posVect or. The undocumented constraint
accessor function MdtConstraintGetPosition(MdtConstraintID constraint, MeVector3 position) should not be
used. This function does not exist for Angular3. Excludes FixedPath, FPFO and RPRO. The following
function is used for these joints
voi d MEAPI Mt *Get Position ( const MIt*ID joint_or_contact,
const unsigned int bodyi ndex,
MeVect or 3 posVector )
The position vector of j oi nt _or _cont act is returned in posVect or for the FixedPath, FPFO and RPRO
joints. The undocumented constraint accessor function Mit Const r ai nt Get Posi ti on
(Mt Constraintl D constrai nt, MeVector3 position) should not be used.
Mdt Bodyl D MEAPI Mt * Get Body ( const MIt*ID joint_or_contact,
unsi gned int bodyi ndex )
Return one of the bodies connected to this j oi nt _or _cont act. The value of bodyi ndex is 0 for the first
body, 1 for the second body.
voi d MEAPI Mt *Get For ce ( const MIt*ID joint_or_contact,
unsi gned int bodyi ndex,
MeVect or3 force )
Return the force applied to a body identified by bodyindex by j oi nt _or _cont act (on the last timestep).
Forces are returned in the world reference frame.
voi d MEAPI Mt *Get Tor que ( const MIt*ID joint_or_contact,
unsi gned i nt bodyi ndex,
MeVect or 3 torque )
Return the torque applied to a body by j oi nt _or _cont act (on the last timestep). The torque is returned
in the world reference frame int or que.

Mit Wor |1 dI D MEAPI Mit*GetWorld ( const Mit*ID joint_or_contact )
Return the world that j oi nt _or _cont act isin.

voi d *MEAPI Mt * Get User Dat a ( const Mit*ID joint_or_contact )
Return the user-defined data of j oi nt _or _cont act .
Mel32 MEAPI Mt * Get Sor t Key ( const MIt*ID joint_or_contact )

Return the sort key of joint_or_contact.

Common Mutators

The Mit * Set Posi ti on function that mutates the position of the contact or the joint in world coordinates, is
common to contact and all of the joints except Pri smat i ¢ (does not exist) and Spr i ng (an additional
argument is required).
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voi d MEAPI Mt *Set Posi tion ( const Mit*ID joint_or_contact,
const MeReal xPos,
const MeReal yPos,
const MeReal zPos )
Set the joint_or_contact position in world coordinates at (xPos, yPos, zPos). The undocumented constraint
mutator function Mdt Const r ai nt Set Posi ti on (Mt Constrai ntl D constraint, MReal x,
MeReal y, MeReal 2z) should not be used. This function does not exist for Angular3.

voi d MEAPI Mt * Set Bodi es ( const Mit*ID joint_or_contact,
const Mt Bodyl D bodyO,
const Mt Bodyl D bodyl )

Attach body0 and body1 toj oi nt_or_contact.

voi d MEAPI Mt *Set User Dat a ( Mit*ID joint_or_contact,
void *data )

Setthe j oi nt _or _cont act user data.

voi d MEAPI Mt * Set Sort Key ( const Mit*ID joint_or_contact,
Mel 32 key )

Assign a sort key toj oi nt _or_cont act.

The similarity of the constraint functions
used by joints and contacts arises because most
of the joints and contact functions are macros that

are defined through the constraint function. Karma
header files for the joints and contacts give a
complete function listing.

Base Constraint Functions

The Mdt Const r ai nt functions are a set of functions that apply to all constraints. The base constraint data
consists of one attachment point per rigid body that is, a position and an orientation. This is the position of
the joint as seen from each rigid body.

These base constraint functions have been used in implementing many of the individual constraint functions
and, in some cases, offer an alternative to the individual functions. However, the effects of the base
constraint functions are not well defined or documented and the individual constraint functions should always
be used in preference.

When a joint or contact constraint is created, the functions can be accessed by converting the contact or joint
ID to a Mt Const r ai nt | Dvariable using the following function:

Mt Const rai nt | D Mit * QuaConst r ai nt ( const Mit*ID joint_constraint )

This function is used to convert a specific joint identifier to its abstract representation of a constraint identifier
Mt Constraint | D.

A constraint is destroyed by using
voi d MEAPI Mt Constr ai nt Dest r oy ( const MitConstraintlD constraint )
Destroys a constraint. The constraint is disabled automatically if necessary.

:The Mt Constrai nt* functions include a function to enable and a function to disable a constraint. The
difference between the destroy function and the disable function is that the disable keeps the constraint
structure in memory for later use. Destroying a constraint removes it from memory so that the it cannot be
used at a later time.

voi d MEAPI Mt Constrai nt Enabl e ( const MitConstraintlD constraint )
Enables simulation of a constraint.
voi d MEAPI Mt Constrai nt D sabl e ( const MitConstraintlD constraint )

Disables simulation of a constraint.
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MeBool MEAPI Mit Constrai ntl sEnabl ed ( const MitConstraintlD constraint )
Determine if a constraint is currently enabled. Returns 1 if enabled, or O if not.

The Constraints Mutator Functions

To attach bodies to a constraint use:

voi d MEAPI Mt Constr ai nt Set Bodi es ( const MitConstraintlD constraint,
const Mt Bodyl D bodyO,
const Mt Bodyl D bodyl )

Set the bodies body0 and body1 to be attached to the constraint

Note that a constraint must be disabled before changing the bodies attached to it. The constraint library
provides a number of Set/Get functions to mutate and access the variables of a constraint structure. Please
consult the Karma Dynamics Reference Manual.
voi d MEAPI Mt Constrai nt Set Axi s ( const MitConstraintlD constraint,
const MeReal px,

const MeReal py,
const MeReal pz )

Set the constraint primary axis in the world reference frame.

voi d MEAPI Mt Constr ai nt Set Axes ( const MitConstraintlD constraint,
const MeReal px,
const MeReal py,
const MeReal pz,
const MeReal ox,
const MeReal oy,
const MeReal oz )

Set the primary and secondary constraint axes in the world reference frame.
The axes will be normalized automatically.
The axes must be orthogonal.

This effectively sets the rotational orientation of a constraint frame consisting of the two given axes and a
third orthogonal axis corresponding to the cross product of the given axes.

An older, deprecated name for this function is Mit Const r ai nt Set Bot hAXi s (sic)

voi d MEAPI Mt Constrai nt BodySet Posi tion
( const MitConstraintlD constraint,
const unsigned int bodyi ndex,
const MeReal x,
const MeReal v,
const MeReal z )

Set the constraint position for the given body in the world reference frame.

voi d MEAPI Mt Constrai nt Set User Dat a ( const MitConstraintlD constraint,
void *data )

Set the constraint userdata.

voi d MEAPI Mt Constr ai nt Set Sort Key ( const MitConstraintlD constraint,
Mel 32 key );

Set the constraint sort key.

The Constraint Accessor Functions

Most (but not all) mutator functions are paired to equivalent accessor functions:

Mit Bodyl D MEAPI Mt Const r ai nt Get Body ( const MitConstraintlD constraint,
const unsigned int bodyi ndex )

Return the body connected to this constraint as determined by bodyi ndex. The value of bodyi ndex is 0
for the first body, 1 for the second body.
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voi d MEAPI Mt Constrai nt Get AXi s ( const MitConstraintlD constraint,
MeVector3 axis )

Get the constraint primary axis in the world reference frame and store its value in axis.

voi d *MEAPI Mt Constrai nt Get User Dat a ( const MitConstraintlD constraint );
Return the user-defined data of this constraint.
voi d MEAPI Mt Constr ai nt BodyGet Axes ( const MitConstraintlD constraint,

const unsigned int bodyi ndex,
MeVect or3 primary,
MeVect or3 ortho )

Get both the primary constraint axis and the orthogonal secondary constraint axis in the world reference
frame for the given body.
An older, deprecated name for this function is Mdt Const r ai nt BodyGet Bot hAxes.

voi d MEAPI Mt Constrai nt Get Axes ( const MitConstraintlD constraint,
MeVect or3 primary,
MeVect or3 ortho )

Get both the primary constraint axis and the orthogonal secondary constraint axis in the world reference
frame.

An older, deprecated name for this function is Mdt Const r ai nt Get Bot hAxes.

To get the value of the force and torque applied to a given body by a constraint use:

voi d MEAPI Mt Constr ai nt Get For ce ( const MitConstraintlD constraint,
const unsigned int bodyi ndex,
MeVect or3 force )

Return the force applied to the body (identified by bodyi ndex) by this constraint on the last timestep. Forces
are returned in the world reference frame.

voi d MEAPI Mt Constrai nt Get Tor que ( const MitConstraintlD constraint,
const unsigned int bodyi ndex,
MeVect or 3 torque );

Return the torque applied to the body (identified by bodyi ndex) by this constraint on the last timestep.
Torque is returned in the world reference frame.

To determine which world a constraint belongs to use:

Mit Wor | dI D MEAPI  Mdt Const r ai nt Get Wor | d ( const MitConstraintlD constraint )
Return the world that the constraint is in.

Mel 32 MEAPI Mt Constrai nt Get Sort Key ( const MitConstraintlD constraint )
Return the constraint sort key.
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Ball-and-socket (BS) Joint: MdtBSJoint

A ball and socket joint forces a point fixed in one bodies reference frame to be at the same location in the
world reference frame as that of a point fixed in another bodies reference frame. This removes three (linear)
degrees of freedom. In the diagram above, the center of the sphere always coincides with the center of the
socket. This ideal joint allows all rotations about the common point. Real ball and socket joints have joint
limits because a body attached to the ball will collide with the sides of the socket. The MdtBSJoint does not
have limits built in but the MdtConeLimit constraint can be used with it to provide limits. This joint is
sometimes referred to as a spherical joint.

A ball and socket joint, in conjuction with a cone limit, may be used to model a shoulder joint, or to connect
links in a chain.

Ball-and Socket Joint Functions

There are no functions specific to Mit BSJoi nt . The reset function sets the joint position in each bodies’
reference frame to {0, 0, 0}. The joint position can be set to change this default.

Mt BSJoi nt 1 D bs = Mt BSJoi nt Creat e(worl d);
creates a ball and socket joint in an Mit Wor | d wor | d. To use the joint to constrain a pair of objects (body1 and
body?2) use;

Mt BSJoi nt Set Bodi es(bs, bodyl, body2);

Mt BSJoi nt Set Posi ti on(bs, pos_x, pos_y, pos_z);
This sets the position of the joint in the world frame. The fixed positions of the joint relative to each body are
then initialized. Alternatively the joint positions can be set individually for each body using the base constraint
interface.

The bodies should already have been created and positioned in their requisite initial positions before
attaching them to the joint.
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Hinge Joint: MdtHinge

A hinge constrains a pair of bodies to rotate freely about a specific hinge axis. The remaining five degrees of
freedom between the joined bodies are fixed. Because of this the hinge is more computationally costly than
the previously discussed ball and socket joint. The hinge axis has fixed positions and orientations in each
rigid body, and the hinge constraint forces those axes to coincide at all times. A hinge is sometimes referred
to as a revolute joint.

A hinge joint could be used to attach a door to a doorframe, a lever, drawbridge or seesaw to its fulcrum, or
to attach rotating parts such as a wheel to a chassis, a propeller shaft to a ship or a turntable to a deck.

Hinge Limits

Up to two stops, or limits, can be set to restrict the relative rotation of the bodies attached by a hinge joint.
These limits may be specified independently to be either hard (if the limit stiffness factor is high) or soft. In a
Karma Dynamics simulation, a hard bounce reverses the bodies’ angular velocities in a single timestep,
while a soft bounce may take many timesteps to reverse the angular velocity.

If the limits are soft, damping can be set so that, beyond the limits, the hinge behaves like a damped spring.

If the limits are hard, the limit restitution can be set to a value between zero and one to govern the loss of
angular momentum as the bodies rebound.

Hinge joint limits range from -nTTthrough nTtfor real number n hence multiple rotations are supported and a
hinge passing a limit will always be detected and the correct response simulated.

Hinge Actuators

A hinge joint can be actuated (powered). This simulates a motor acting on the hinge’s remaining degree of
freedom, the hinge angle. To characterize a hinge motor, set a desired angular speed and the motor’s
maximum torque. The motor is assumed to be symmetric, so that the maximum torque can be applied in
either direction. A torque no greater than this is applied to the hinged bodies to change their relative angular
velocity, until either the desired velocity is achieved, or the hinge angle hits a limit (if set).

The response of an actuated hinge hitting a limit depends on the stiffness and restitution or damping
properties that have been chosen for the relevant limit, but in general the hinge will (quickly or slowly) come
to rest at the set limit. If a soft limit has been specified, the rest position will be beyond the limit by an angle
determined by the motor’'s maximum torque and the limit stiffness factor.

Whenever a hinge is actuated, or is at (or beyond) one of its limits, the computational cost is equivalent to
constraining six degrees of freedom.

Hinge Joint Functions

A Hinge joint is described by the position and direction of its axis. The reset function zeros the position in
each body’s reference frame, and sets the axis direction to each body’s x-axis, i.e., position = {0,0,0},
axis={1,0,0}.

Accessors

The accessor functions specific to the hi nge are:
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Mdt Li mit1 D MEAPI Mt H ngeGet Li mi t ( const MitH ngelD joint );

Provide read and write access with the Mdt Li mi t functions to the constraint limits parameters of the j oi nt
by providing the corresponding Mt Li mi t | D identifier.

voi d MEAPI Mt H ngeCet Axi s ( const Mt Hi ngel D joint,
MeVect or 3 axi sVec );

The Hinge joint axis is returned in the vector axi sVec.

Mutators

The mutator functions specific to the hi nge are:

voi d MEAPI Mt Hi ngeSet Li mit ( const Mt Hi ngel D joint,
const MitLimtID NewLimt );
Reset the joint limit and then copy the public attributes of NewLi i t .
voi d MEAPI Mt H ngeSet Axi s ( const Mt Hi ngel D joint,
const MeReal XxAXis,

const MeReal yAXis,
const MeReal zAxis );

Set the hinge axis of j oi nt to (xAxis, YyAXis, zAXxis).
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Prismatic: MdtPrismatic

e

— 7

The prismatic, or slider, joint is like the hinge in that two axes, one fixed in each of the two constrained bodies
reference frames, are forced to coincide. In the prismatic however, the 2 bodies move along the axis, not
around it. Like a hinge, a prismatic joint removes five degrees of freedom from the relative motion of the
attached bodies, leaving one linear degree of freedom. The relative orientation of the bodies are maintained
by the joint. The prismatic can be imagined as a bar sliding inside a block with a hole in it, where the area of
the hole matches the cross sectional area of the bar.

Prismatic Limits

Two limits may be set to restrict the linear motion of a prismatic joint. These limits may be either hard or soft,
with the ability to set the stiffness, restitution and damping properties independently for each limit.

Prismatic Actuators

Speed and maximum force may be set to actuate the movement of a prismatic joint. The actuation force will
be applied to slow down or speed up the attached bodies until their relative velocity reaches the specified
speed, unless a limit is reached first.

Whenever a prismatic joint is actuated, or is at (or beyond) one of its limits, the computational cost is
equivalent to constraining six degrees of freedom rather than five.

Prismatic Joint Functions
A Prismatic joint is described by the direction of its sliding axis. The reset function sets this to the bodies’ x-
axis, i.e. {1,0,0}.

When the constrained bodies have been initialized and set to their starting positions, all that is required to
initialize the Prismatic joint is to set the direction of its sliding axis.

The initial position of the bodies specifies the zero displacement of the sliding degree of freedom used for the
Prismatic limits. This is set automatically when the axis is set.

Accessors
Here are the accessor functions specific to Pri smati c:

MitLimitl D MEAPI Mt PrismaticGetLimnt ( const MitPrismaticlD joint )
Provides read/write access to the constraint limits of j oi nt .

void MEAPI Mt PrisnmaticGet AXi s ( const MitPrismaticlD joint,

MeVect or 3 axi sVec )
The prismatic joint axis is returned in the vector axi sVec.

Mutators

Here are the mutator functions specific to Pri smat i c:

voi d MEAPI Mt PrismaticSetLimt ( const MitPrismaticlD joint,
const MitLimtID NewLinit )

Reset the joint limit and then copy the public attributes of NewLi i t .
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voi d MEAPI Mt PrismaticSet Axi s ( const MdtPrismaticlD joint,
const MeReal XAxis,
const MeReal yAXis,
const MeReal zAxis )

Set the prismatic axis of j oi nt to (xAxi s, yAXis, ZzAXis).
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Universal Joint: MdtUniversal
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In this joint, two axes, one fixed in each of the two constrained bodies, are forced to have a common origin
and to be perpendicular at all times. This is a lot like the ball and socket joint but here the ball is not allowed
to twist in its socket.

A universal joint removes four degrees of freedom from the attached bodies. It fixes their relative position
and constrains them not to twist about a third axis, perpendicular to the two given axes. This joint may be
pictured as a joystick mechanism in which two hinges are joined, one on top of the other with perpendicular
axes, to allow an attached stick to move first in the x-direction then in the y-direction.

This mechanism is also known as gimbal, and the mechanism suffers from dreaded ‘gimbal-lock’ at 90°. This
relates to its use as an ‘engineering’ universal joint that can be used to transmit torque from one body to
another around a small bend. The transmission becomes increasingly unsmooth as the angle of bend
approaches 90° and finally cannot transmit torque at all.

In Karma, the singularity at 90° can be avoided by applying a Cone-Limit constraint in parallel with the
Universal.

Note that a smoother type of universal joint with built in limits is implemented in the Skeletal joint.

Universal Joint Functions

A Universal joint is described by the position of the joint and the directions of the axes fixed in each body.
The reset function zeros the position in each body frame and defaults the axes to the x-axis {1,0,0} in body1
and the y-axis {0,1,0} in body2.

Accessors

The accessor function specific to Uni ver sal i s:

voi d MEAPI Mt Uni ver sal Get Axes ( const Mt Universal D joint,
const unsigned int bodyi ndex,
MeVect or3 primary_axis,
MeVect or 3 orthogonal _axis )

The joint axes corresponding to bodyi ndex are returned in the vectors pri mary_axi s, ort hogonal _axi s.

Mutators

The mutator function specific to Uni ver sal is:

voi d MEAPI Mt Uni ver sal Set Axes ( const Mt UniversalID joint,

const unsigned int bodyi ndex,
const MeReal px,

const MeReal py,

const MeReal pz )

const MeReal ox,

const MeReal oy,

const MeReal oz )

Set the joint axes corresponding to bodyi ndex, to (px, py, pz) and (0x,0y,0z) in world coordinates. The
given axes must be orthonormal.
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Angular Joint: MdtAngular3 & MdtAngular2

The relative
|T orientation of
these two bodies
is fixed but their
relative position
can vary freely

The Angular3 joint removes three rotational degrees of freedom by constraining one body to have a fixed
orientation with respect to another body. While one body can move freely in space (irrespective of the other
body’s location) its orientation is fixed relative to the other body’s orientation. It is possible to add one
rotational degree of freedom about a specified axis, enabling a rotation of a body with respect to the other,
effectively modifying the Angular3 joint to an Angular2 joint.

Angular3 and angular? joints are useful for keeping things upright, such as game vehicles that should not
overturn. Springing and damping can be set to introduce some softness around the upright.

Angular3 Joint Functions

The default for the Angular3 is to align the two bodies’ reference frames. The reset function also has this
effect. The joint is initialized by the call to Mit Angul ar 3Set Bodi es that notes the bodies initial orientations
for use in maintaining the same fixed relative orientation.

Accessors

The accessor functions specific to Angul ar 3 are:
MeBool MEAPI Mt Angul ar 3Rot at i onl sEnabl ed ( const MitAngular3ID joint );

Return the current state of the bEnabl eRot at i on flag. If this flag is set (true), this constraint is effectively
an Angul ar 2 joint.

voi d MEAPI Mt Angul ar 3Get Axi s ( const Mit Angul ar31D j oi nt,
MeVector3 axis )

The Angul ar 3 joint axis vector is returned in axi s. Rotation is allowed about this axis if the
bEnabl eRot at i on flag is set.

MeReal MEAPI Mt Angul ar 3Get Sti f f ness ( const MitAngular3IDj )
Return current 'stiffness’ of this angular constraint.
MeReal MEAPI Mt Angul ar 3Get Danpi ng ( const MitAngular3IDj )

Return current spring ‘damping’ of this angular constraint.

Mutators

The mutator functions specific to Angul ar 3 are:

voi d MEAPI Mt Angul ar 3Enabl eRot ati on ( const Mt Angul ar3ID j oi nt,
const MeBool NewRotationState )

Set or clear the joint bEnabl eRot at i on flag to NewRot at i onSt at e. If this flag is set (true), this constraint
is effectively an Angular2 joint enabling the rotation of one body relative to another.
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voi d MEAPI Mt Angul ar 3Set Axi s ( Mt Angul ar 31 D j oi nt,
MeReal XxAXxis,
MeReal yAxis,
MeReal zAxis )

Set the joint axis at (xAxi s, yAxis, zAxis) inworld coordinates. Note that this axis is used only if the
bEnabl eRot at i on flag is set.

voi d MEAPI Mt Angul ar3Set Sti ff ness ( const MitAngular3IDj,
const MeReal s )

Set the angular constraint stiffness about the enabled axis. The default is MEINFINITY.

voi d MEAPI Mt Angul ar 3Set Danpi ng ( const MitAngular3IDj,
const MeReal d )

Set the angular constraint damping about the enabled axis. The default is MEINFINITY.
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CarWheel Joint: MdtCarWheel

| steering axis (hinge)
17 :

<+—— suspension (prismatic)

- —«— Wheel rotation axis (hinge)

The CarWheel joint models the behavior of a car wheel with optional steering and suspension. The
CarWheel joint is a combination of two hinge joints, one for the steering and one for the rotation of the wheel,
and one prismatic joint for telescopic suspension with built in springing.

Body 1 is the chassis and body 2 is the wheel. The connection point for the wheel body is its center of mass.

CarWheel Joint Functions

A CarWheel joint is defined by a steering axis and a hinge axis. The steering axis also acts as the
suspension axis. It has a direction fixed in the chassis frame and passes through the origin of the wheel’s
reference frame. The hinge axis has a direction fixed in the wheel frame and also passes through the frame
origin. The constraint keeps these two axes perpendicular.

The default steering axis is the body1 z-axis and the default hinge axis is the body?2 y-axis.

Accessors

The accessor functions specific to the Car Wheel joint are:
MeReal MEAPI Mt Car Wheel CGet Hi ngeAngl e( const Mt Car Wheel I D joint );

Return the wheel joint current hinge angle as a value between zero and 2*PI radians, inclusive.

MeReal MEAPI Mt Car Wheel Get Hi ngeAngl eRat e( const Mt Car Wheel I D joint );

Return the wheel joint angular velocity about the hinge axis.

voi d MEAPI Mt Car Wheel Get Hi ngeAxi s( const Mt Car Wheel | D j oi nt,
MeVect or 3 hingeAxis );

The wheel joint hinge axis is returned in hi ngeAxi s.

MeReal MEAPI Mt Car Wheel Get Hi ngeMbt or Desi redVel oci t y(
const Mt CarWeel ID joint );

Return the desired velocity of the hinge motor.

MeReal MEAPI Mt Car Wheel Get Hi ngeMbt or MaxFor ce( const Mit Car Wheel |1 D j oi nt
)

Return the maximum force that the hinge motor is allowed to use to attain its desired velocity.

MeReal MEAPI Mt Car Wheel Cet St eeri ngAngl e( const Mt Car Wheel ID joint );

Return the wheel joint steering angle.
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MeReal MEAPI Mt Car Wheel Cet St eeri ngAngl eRat e( const Mt Car Wheel ID joint );

Return the wheel joint angular velocity about the steering axis.

voi d MEAPI Mt Car Wheel Get St eeri ngAxi s( const Mt Car Wheel I D j oi nt,
MeVect or 3 steeringAxis );

The wheel joint steering axis is returned in st eeri ngAxi s.

MeReal MEAPI Mt Car Wheel Get St eeri ngMot or Desi redVel oci ty(
const Mt Car Wheel I D j oi nt)

Return the desired velocity of the steering motor.

MeReal MEAPI Mt Car Wheel Get St eer i ngMbt or MaxFor ce (
const Mt CarWheel ID joint );

Return the maximum force that the steering motor is allowed to use to attain its desired velocity.

MeReal MEAPI Mt Car Wheel Get Suspensi onHei ght ( const Mt Car Wheel I D joint );

Return the wheel joint suspension height.

MeReal MEAPI Mt Car Wheel Get Suspensi onH ghLi mi t ( const Mt Car Wheel | D j oi nt
);

Return the suspension upper limit.

MeReal MEAPI Mt Car Wheel Get Suspensi onKd ( const Mt CarWheel ID joint );

Return the suspension "damping constant” (also known as the "derivative constant”). This gives
rise to the damping term Ky in the suspension force equation: F = -ky*displacement + ky*velocity,
where K, is Hookes Law constant and Ky is the damping constant.

MeReal MEAPI Mt Car Wheel Get Suspensi onKp( const Mt Car Wheel ID joint );

Return the suspension "proportionality constant”. This gives rise to the spring term kj, in the
suspension force equation: F = -ky*displacement + ky*velocity, where K, is Hookes Law constant
and Ky is the damping constant

MeReal MEAPI Mt Car Wheel Get Suspensi onLi mi t Sof t ness(
const Mt CarWheel ID joint );

Return the suspension limit softness.

MeReal MEAPI Mt Car Wheel Get Suspensi onLowLi mit( const Mt Car Wheel I D j oi nt

Return the suspension lower limit.

MeReal MEAPI Mt Car Wheel Get Suspensi onRef erence( const Mt Car Wheel I D j oi nt

Return the suspension attachment point (reference).

MeBool MEAPI Mt Car Wheel | sSt eeri ngLocked( const Mt CarWheel ID joint );

Return the lock state of the steering angle. (lock is 1 if steering axis is locked at angle 0).
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Mutators

The mutator functions specific to the Car Wheel joi nt are:

voi d MEAPI Mt Car Wheel Set St eer i ngAndHi ngeAxes( const Mt Car Waeel I D j oi nt,
const MeReal xSteer, const MeReal ySteer, const MeReal zSteer,
const MeReal xHi nge, const MeReal yHi nge, const MeReal zHinge

)

Set the wheel joint hinge axis at ( XxHi nge, yH nge, zHinge).

voi d MEAPI Mt Car Wheel Set Hi ngeLi mi t edFor ceMbt or ( const Mt Car Wheel | D
joint,

E

const MeReal desiredVelocity, const MeReal forcelLimt

Set the hinge limited force motor parameters.

voi d MEAPI Mt Car Wheel Set St eeri ngLi mi t edFor ceMbt or (
const Mt Car Wheel I D j oi nt,
const MeReal desiredVelocity, const MeReal forceLinmt );

Set the limited force motor parameters of a car wheel joint.

voi d MEAPI Mt Car Wheel Set St eeri ngLock( const Mt Car Wheel I D j oi nt,
const MeBool |ock );

Lock or unlock the steering angle ( lock is 1 if steering axis is locked at angle 0).

voi d MEAPI Mt Car Wheel Set Suspensi on( const Mt Car Wheel I D j oi nt,
const MeReal Kp, const MeReal Kd,
const MeReal limt_softness, const MeReal lolinit,
const MeReal hilimt, const MeReal reference );

Set the suspension parameters.
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Linearl Joint: MdtLinearl
N

A Linearl joint removes one degree of freedom by confining a point fixed in one of the attached bodies to a
plane fixed in the other body.
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Linear2 Joint: MdtLinear?2

A Linear 2 joint removes two degrees of freedom by confining a point fixed in one of the attached bodies to a
line fixed in the other body. This can be used to simulate a continuous sliding contact between an object and
a line, such as a rail or pole.

Functions Specific to Linear2 Joint

Accessors

The accessor function specific to Li near2 i s:

voi d MEAPI MitLinear2CGetDirection ( const MltLinear2l D contact,
MeVect or 3 directVec );

The Li near 2 joint primary direction is returned in di r ect Vec in the world reference frame.

Mutators

The mutator function specific to Li near 2 i s:

voi d MEAPI MitLinear2SetDirection ( const MltLinear2lD contact,
const MeReal xDir, const MeReal yDir, const MeReal zDir );

Set the joint direction (xDi r, yDir, zDir) inworld coordinates. x, y and z should be const .
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Fixed-Path Joint: MdtFixedPath

The top of the
pendulum must
follow the fixed
path.

The ball swings

/ freely below the top

The Fixed-Path joint is a Ball-and-Socket joint modified to allow motion of the joint attachment point. To
enable this to be done correctly both position and velocity data for the moving joint attachment point are
required as it moves along a given path. While it is possible to move the position of a Ball-and-Socket
directly, this does not feed the correct forces into the attached bodies and relies on numerical relaxation to
satisfy the constraint.

This joint can be used to attach an animated path to the simulation, in such a way that the forces generated
by any animated motion will be transmitted correctly to the simulated, non-animated, objects. For example, a
Fixed Path joint could be used to move the attachment point of a pendulum kinematically while the pendulum
swings in response to the motion, as sketched above. The animation must supply the position of the fixed
path joint at each timestep. The joint can feed back the forces and torques resulting from the pull of gravity
and any contact with other simulated bodies.

A Fixed Path joint fixes the relative position of the two attached bodies, removing three degrees of freedom,
while leaving them free to rotate freely with respect to one another.

Functions Specific to Fixed-Path Joint

Accessors

The accessor function specific to Fi xedPat h i s:

voi d MEAPI Mit Fi xedPat hGet Vel ocity( const Mt Fi xedPat hl D j oi nt,
const unsigned int bodyi ndex, MeVector3 velocity );

The fixed path joint velocity with respect to one of the constrained bodies is returned in vel oci ty.
The reference frame is determined by the third parameter, bodyi ndex .

Mutators

The mutator function specific to Fi xedPat h i s:

voi d MEAPI Mt Fi xedPat hSet Vel ocity( const Mt Fi xedPat hl D j oi nt,
const unsigned int bodyl ndex,
const MeReal xVel, const MeReal yVel, const MeReal
zVel);

Set the fixed path joint velocity with respect to one of the constrained bodies. This joint velocity is
set in the bodies' reference frames. The reference frame is determined by the fifth parameter,
bodyl ndex.
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Relative-Position-Relative-Orientation Joint;
MdtRPROJoint

N\

The RPRO joint is a feature added for use in ‘playing back’ an animation through an object, or in controlling
the motion of an object via user interaction, while allowing for physical response to collisions and fast
motions. Note that the current implementation supports animation of relative orientations only, addressing
character motion use-cases where the animated objects are articulated chains connected by ball-and-socket
joints. Support for animation of relative positions is scheduled for a future release.

The RPRO joint constrains all six degrees of freedom between the attached bodies, or in other words leaves
no freedom to move between the two bodies. The exception is when the force-limit feature allows the joint to
break when a specified maximum force is exceeded in a collision or fast motion. However, the relative
orientation can be driven by an animation script or a stream of user input supplied as a sequence of relative
quaternions and relative angular velocities (when support for relative position is added an input sequence of
relative positions and relative linear velocities will be required to drive translations).

By default, the relative motion is specified between the center-of-mass frames of the primary and secondary
bodies. It is also possible to specify joint attachment frames that are offset from the center of mass - useful if
animation data is supplied in a different body-fixed frame of reference, though this feature does incur a small
performance cost. At present, because relative positions are not yet supported, the only way to create an
offset between the two body frames is to specify a joint attachment position using

Mit RPRQJoi nt Set At t achnent Posi tion().

Angular motion between the two bodies is achieved by updating the relative orientation using
Mit RPRQJoi nt Set Rel ati veQuat er ni on() and the relative angular velocity using
Mit RPRQJoi nt Set Rel at i veAngul ar Vel ocity().

Force limits, or ‘strengths’, of the linear and angular parts of the constraint can be set using

Mit RPRQJoi nt Set Li near Strengt h() and Mt RPRQJoi nt Set Angul ar Strengt h(). Setting low
strengths will cause the constraint to be broken easily by imposed accelerations or external forces. This
provides a method by which animations can be played through an object while allowing physical reactions to
fast motions or collisions with other objects in the simulation.

As an example of user interaction, the RPRO joint is useful in picking up and reorienting objects in the
simulation environment. In a ‘first person’ game an object could be picked up at a fixed point in the player’s
perspective and its position maintained in the field of view as the player moves. With linear strengths set to
small values the picked object will react physically to collisions and fast motions. The object can be
reoriented around its picked position by updating the relative quaternion and relative angular velocity inputs.

As with all joints the RPRO can be used to join a body to the world by specifying one of the bodies as NULL.
This could be used to drive anchored robot arms, cranes or other mechanisms fixed in the simulation world
frame. Note that, because relative positions are not yet implemented, full vehicle motions cannot be directly
driven in this way.
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Functions Specific to RPRO Joint

Accessors

The accessor functions specific to RPRO ar e

voi d MEAPI Mt RPRQJoi nt Cet Rel ati veQuat er ni on( const Mt RPRQJoi ntI D j oi nt,

MeVect or 4 quaternion );

This retrieves the relative quaternion.

voi d MEAPI Mt RPROJoi nt Get Att achnent Ori entati on( const Mt RPRQJoint| D

joint, const unsigned int bodyi ndex, MeVector4 quaternion )

The full constraint joint attachment orientation with respect to one of the constrained bodies is

returned in quat er ni on. The reference frame is selected by the parameter bodyi ndex.

voi d MEAPI Mt RPRQJoi nt Get At t achment Posi ti on( const Mt RPRQJoi ntID joint,

const unsigned int bodyi ndex,
MeVect or 3 position )

The full constraint joint position with respect to one of the constrained bodies is returned in

posi ti on. The reference frame is selected by the second parameter (bodyi ndex).

Mutators

The mutator functions specific to RPRO ar e

voi d MEAPI Mt RPRQJoi nt Set Rel ati veQuat er ni on( const Mt RPRQJoi nt1 D joi nt,

const MeVector4 quaternion );

Set the relative orientation quaternion.

voi d MEAPI Mt RPRQJoi nt Set At t achnment Quat er ni on( const Mt RPRQJoi nt | D

j oint,

const MeReal (qO,

const MeReal ql,

const MeReal q2,

const MeReal (@3,

const unsigned int bodyi ndex );

Set the full constraint joint attachment orientation with respect to one of the constrained bodies
described by the quaternion ( q0, q1, g2, g3) .The reference frame is selected by the parameter
bodyi ndex.

voi d MEAPI Mt RPRQJoi nt Set At t achment Posi ti on( const Mt RPRQJoi ntID joint,
const MeReal x,

const MeReal v,

const MeReal z,

const unsigned int bodyi ndex );

Set the constraint joint position with respect to one of the constrained bodies. The reference frame
is selected by the parameter bodyi ndex.
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voi d MEAPI Mt RPRQJoi nt Set Angul ar St rengt h( const Mt RPRQJoi nt I D j oi nt,
const MeReal sX,

const MeReal sY,

const MeReal sZ);

Set the limit on the maximum torque (sX, sY, sZ) that can be applied to maintain the constraints.
If all values are set at MEI NFI NI TY, the constraint will always be maintained. If some finite
(positive) limit is set, the constraint will become violated if the force required to maintain it
becomes larger than the threshold.

voi d MEAPI Mt RPRQJoi nt Set Li near St rengt h( const Mt RPRQJoi nt| D j oi nt,
const MeReal sX,

const MeReal sY,

const MeReal sZ);

Set the limit on the maximum force (sX, sY, sZ) that can be applied to maintain the constraints.
If all values are set at MEI NFI NI TY, the constraint will always be maintained. If some finite
(positive) limit is set, then, the constraint will become violated if the force required to maintain it
becomes larger than the threshold.

voi d MEAPI Mt RPRQJoi nt Set Rel ati veAngul ar Vel oci ty( Mt RPRQJoi nt 1D j oi nt,
MeVector3 vel ocity );

Set the relative angular velocity of the joint.
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Skeletal Iimit constraint: MdtSkeletal

Mt Skel et al combines a ball-and-socket joint with a general orientation constraint which puts a limit on its
'swing and twist’ freedoms. Thinking of a joystick, swing limits are defined in terms of maximum joystick
angles in two orthogonal directions. Equal limit angles define a circular cone. Unequal limit angles define an
elliptical cone. Twist is defined to be zero at the central joystick position in its reference alignment and at
other positions achieved by a single great-circle rotation from this orientation.

This joint is currently experimental. Actuation options are to be added.

Skeletal Joint Functions

The reset function defaults to using the x-axes of the two body frames and limits the angle between them to
Pl radians, which is effectively no limit.

Accessors

The accessor functions specifictot he Skel etal joint are::

MeReal MEAPI Mt Skel et al Get ConePri mar yLi nmi t Angl e(
const Mt ConeLinitID j);

Return the primary cone limit angle; i.e. the angle between the cone axis and the side of the cone.

MeReal MEAPI Mt Skel et al Get ConeSecondar yLi mi t Angl e(
const Mt ConeLinitID j);

Return the secondary cone limit angle; i.e. the angle between the cone axis and the side of the
cone.

MeReal MEAPI Mt Skel et al Get Twi st Li mi t Angl e(const Mit ConeLimitID j);

Return thetwist limit angle.

MeReal MEAPI Mt Skel et al Get ConeSti ffness(const MitConeLinitID j);

Return the current cone limit stiffness.

MeReal MEAPI Mt Skel et al Get ConeDanpi ng(const Mt ConeLinmitID j);

Return the current cone limit damping.

MeReal MEAPI Mt Skel et al Get Twi st Sti ffness(const MitConeLinitID j);

Return the current twist limit stiffness.

MeReal MEAPI Mt Skel et al Get Twi st Danpi ng(const Mit ConeLimitID j);

Return the current twist limit damping.
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Mutators

The mutator functions specifictot he Skel etal joint are:

voi d MEAPI Mt Skel et al Set ConePri maryLi m t Angl e(
const Mt SkeletalID j, const MeReal theta);

Set the primary limit angle to t het a. The limit angle is the angle between the cone axis and the
side of the cone. Defaults to ME_PI/4 at reset.

voi d MEAPI Mt Skel et al Set ConeSecondar yLi m t Angl e(
const MitSkeletal ID j, const MeReal theta);

Set the secondary limit angle to t het a. The limit angle is the angle between the cone axis and the
side of the cone. Defaults to ME_PI/4 at reset.

voi d MEAPI Mt Skel et al Set Twi st Li mi t Angl e(const Mt Skeletal ID j,
const MeReal theta);

Set the twist limit angle to t het a. Defaults to ME_PI1/4 at reset.

voi d MEAPI Mt Skel et al Set ConeSti ffness(const Mt ConeLimtID j,
const MeReal kp);

Set the cone limit stiffness to k.

voi d MEAPI Mt Skel et al Set ConeDanpi ng(const Mt ConeLimtID j,
const MeReal kd);

Set the cone limit damping to kg.

voi d MEAPI Mt Skel et al Set Twi st Sti ffness(const Mt ConeLimtID j,
const MeReal kp);

Set the twist limit stiffness to k.

voi d MEAPI Mt Skel et al Set Twi st Danpi ng(const Mt ConeLimtID j,
const MeReal kd);

Set the twist limit damping to kq.
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Spring Joint: MdtSpring

<—— natural length ——
(I
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This joint attaches one body to another, or to the inertial reference frame, at a given separation. The spring
joint tends to restore itself to its natural length by opposing any extension (body relative distance > spring
natural length) or any compression (body relative distance < spring natural length).

The mathematical relation between the force exerted by a spring (F), its natural length (1), its stiffness (k) and
the distance between its two endpoints (d) is called Hooke’s Law and is written as:

F = —k(d-1)

The separation between the two attached bodies is governed by two limits that may both be hard (which
simulates a rod or strut joint) or both soft (simulating a spring) or hard on one limit but soft on the other (e.g.
an elastic attachment that may be stretched but not compressed). The default behaviour is spring-like, with
two soft, damped limits, both initialized at the initial separation of the bodies.

There is no angular constraint between bodies attached by a spring. The one linear dimension is
constrained, restricting one degree of freedom. This adds just one row to the constraint matrix.

The spring is a configurable distance constraint.
» String can be simulated that can decrease in length but not increase.
» Elastic, that can decrease in length and can stretch can be simulated.
» A solid rod that cannot change it's length can be simulated.

Functions that are Specific to the Spring Joint

Accessors

The accessor functions specific to Spri ng are:
MitLimtl D MEAPI Mt SpringGetLimt ( const MitSpringlD joint );

Return the ID handle of a constraint limit.

voi d MEAPI Mt Spri ngGet Position( const MitSpringlD joint, MeVector3
position,
const unsigned int bodyindex );

The spring joint attachment position to the body bodyi ndex is returned in posi ti on.

Mutators

The mutator functions specific to Spri ng ar e:

void MEAPI Mt SpringSetLimt( const MtSpringlD joint,
const MitLimitlID NewLimt );

Reset the joint limit and copy the public attributes of NewLi mi t .

voi d MEAPI Mt Spri ngSet Nat ur al Lengt h( const Mt SpringlD j oi nt,
const MeReal NewNatural Length );

Set the spring length under no load i.e. it's natural length.
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voi d MEAPI Mt SpringSet Stiffness( const Mt SpringlD joint,
const MeReal NewsStiffness );

Set the spring stiffness or spring constant.

voi d MEAPI Mt Spri ngSet Danpi ng( const Mt Springl D joint,
const MeReal NewDanping )

Set the spring damping value.

voi d MEAPI Mt SpringSet Position( const Mt SpringlD joint,
const unsigned int bodyi ndex,
const MeReal x, const MeReal y, const MeReal z )

Set the joint position in world coordinates. This function differs from the generic
Mt * Set Posi ti on by requiring a bodyi ndex.
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Cone Limit constraint: MdtConeLimit

7
7
/

The Mit ConeLi nmi t constraint places a limit on the angle between a pair of axes, one being fixed in each
body. This constraint can be used in parallel with a ball and socket joint, for example, to limit its angular
freedoms to a cone as shown in the sketch. Note that the cone limit does not place a limit on the ‘twist’
freedom.

The Cone Limit behaves more like a contact than a joint in that it adds no constraint while inside the limit.
When the limit is hit, a single constraint is generated to enforce the angular limit.

The Cone-Limit constraint can be used in parallel with a UniversalJoint, that will also constrain the twist
freedom, or on top of an Angular3 or an RPROJoint with similar effect.

The behavior of a Cone-Limit is ill defined for small cone angles, so angles less than about 5° should not be
used.

Cone Limit Functions

The reset function defaults to using the x-axes of the two body frames and limits the angle between them to
Pl radians, which is effectively no limit.

Accessors
The accessor functions specifictot he Cone Limit are:
MeReal MEAPI Mt Coneli mit Get ConeHal f Angl e(const Mit ConeLinmitID j);

Return the cone half angle; i.e. the angle between the cone axis and the side of the cone.

MeReal MEAPI Mt ConelimtGet Stiffness(const MitConelLinitID j);

Return the current limit stiffness.

MeReal MEAPI Mt Coneli m t Get Danpi ng(const Mt ConeLinitID j);

Return the current limit damping.

Mutators

The mutator functions specifictot he Cone Limt are:
voi d MEAPI Mt ConelLi m t Set ConeHal f Angl e(const Mt ConeLinmitiID j,
const MeReal theta
)

Set the limit cone half angle angle to t het a. The cone half angle is the angle between the cone
axis and the side of the cone. Defaults to ME_PI at reset.
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voi d MEAPI Mt ConelLimitSetStiffness(const MitConeLinmtID j, const
MeReal kp);

Set the limit stiffness to k.

voi d MEAPI Mt Coneli it Set Danpi ng(const Mt ConeLinitlD j, const
MeReal kd);

Set the limit damping to kg.
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Joint Limit; MdtLimit

A Joint is defined as a constraint on the free movement of bodies relative to one another. To achieve this,
joints must themselves be constrained. The constraint of a joint is called a Limit. Each joint may have one or
several limits. In practice, 2 limits would be a sensible maximum number of limits. Adding more limits would
not further constrain the system, it would just increase the size of the constraint matrix that would need to be
solved, slowing down the simulation. Adding limits to a prismatic or hinge joint, where a high and low limit are
set, will add a row to the constraint matrix which is equivalent to losing one degree of freedom. In Karma,
each limit is represented by a Mit Bcl Li mi t structure and is defined by a list of parameters that describe its
action on a joint.

The Mdt Library provides a set of accessors/mutators and indicators/actuators to interact with the

Mdt Bel Li mi t structure. Unlike a mutator, an actuator acts like a simple on/off switch, and does not require
any value other than a boolean value. An indicator acts like an indicator light, telling you if an actuator is on
or off by returning the appropriate boolean value.

Accessors:
MeReal MEAPI Mt LimtCetPosition( const MitLinmitIDIlinit );

Return the relative position of the bodies attached to the joint.

MeReal MEAPI Mt LimtCetVelocity( const MitLinmitIDIlinit );

Return the relative velocity of the bodies attached to the joint.

MeReal MEAPI MitLimtCetStiffnessThreshold( const MitLimitIDlimt );

Return the limit stiffness threshold. Please refer toMdt Li mi t Set Sti f f nessThr eshol d() inthe
mutator section.

MeReal MEAPI Mt Limt Get MotorDesiredVelocity( const MitLimtIDIlimt );

Return the desired velocity of the motor. A lower limiting velocity may be achieved if the attached
bodies are subject to velocity or angular velocity damping.

MeReal MEAPI Mt Lim t Get Mot or MaxForce( const MitLimtIDIlimt );

Return the maximum force that the motor is allowed to use to attain its desired velocity.
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Mutators

void MEAPI MitLinmitSetLowerLinmt( const MitLimtIDIlimt,
const MitSingleLinmtID sl );

Set the lower limit properties by copying the single limit data into the Mdt Bcl Li mi t structure. If
the lower limit stop is higher than the current upper limit stop, the latter is also reset to the new
stop value.

void MEAPI MtLimitSetUpperLinmt( const MitLimtIDIlimt,
const MitSingleLinmtID sl );

Set the upper limit properties by copying the single limit data into the Mdt Bcl Li mi t structure. If
the upper limit stop is lower than the current lower limit stop, the later is also reset to the new stop
value.

void MEAPI MitLimitSetPosition( MitLimtIDlimt, const MeReal NewPosition
)

This sets an offset that is used to transform the measured relative position coordinate into the
user's coordinate system. It does not change the actual position or orientation of any modelled
object.

void MEAPI MitLimitSetStiffnessThreshol d( const MitLimtID Ilimt,
const MeReal NewsStiffnessThreshold );

Set the limit stiffness threshold. When a limit stiffness exceeds this value, damping is ignored and
only the restitution property is used. When the limit stiffness is at or below this threshold, restitution
is ignored, and the stiffness and damping terms are used to simulate a damped spring. The
stiffness threshold is enforced to be non-negative: the initial value is MEI NFI NI TY.

void MEAPI MdtLimitSetLimtedForceMdtor( const MitLimtIDIlimt,
const MeReal desiredVelocity,
const MeReal forceLimt );

Set the limited-force motor parameters, enforcing a non-negative value of f or ceLi ni t . If the
latter is zero, this service deactivates the motor: otherwise, the motor is activated. This service
does not enable attached disabled bodies.

Actuators

void MEAPI Mt LimitcCalcul atePosition( const MitLimtIDIlimt,
const MeBool NewState );

Set or clear the "calculate position” flag without changing the limit's activation state. Note that if the
limit is currently activated or powered, the "calculate position" flag cannot be cleared.

void MEAPI MtLimitActivateLinmts( const MitLimtIDIlinit,
const MeBool NewActivationState );

Activate (if NewAct i vat i onSt at e is non-zero) or deactivate (if zero) the limit, without changing
any other limit property.

void MEAPI MitLinmitActivateMotor( const MitLimtIDIlimt,
const MeBool NewActivationState );

Activate (if NewAct i vat i onSt at e is non-zero) or deactivate (if zero) the limited-force motor on
this joint axis, without changing any other limit property.
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Indicators:
MeBool MEAPI MitLimtlsActive( const MitLimtIDIlimt );

Returns non-zero if the corresponding degree of freedom of the joint (i.e. the joint position or
angle) has a limit imposed on it, and zero if it does not. Most joints have more than one degree of
freedom. Joint limits are inactive by default, and will not affect the attached bodies until activated
and non-zero stiffness and/or damping properties are set.

MeBool MEAPI MitLimtPositionlsCalculated( const MitLimtIDIlimt );

Returns non-zero if the position or angle of the corresponding degree of freedom of the joint is to
be calculated, and zero if it is not calculated. If the degree of freedom is either limited or actuated
(i.e. powered), the joint position must be calculated. By default, joint positions are not calculated.

MeBool MEAPI MitLimtlsMtorized( const MitLinmtIDIlinit );

Returns non-zero if the limit is motorized, and zero if it is not. Joint limits are motorized by default.
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The Single Joint Limit: MdtSingleLimit

Each limit contains two sub-structures of type Mit Bcl Si ngl eLimi t:

Structure Member Description
MeReal The damping term (kg) for this limit. This must not be negative.
danpi ng The default value is zero. This property is used only if the limit

hardness is less than or equal to the damping threshold. If the
hardness and damping of an individual limit are both zero, it is
effectively deactivated.

MeReal The ratio of rebound velocity to impact velocity when the joint

restitution reaches the low or high stop. This is used only if the limit hardness
exceeds the damping threshold. Restitution must be in the range
zero to one inclusive: the default value is one.

MeReal The spring constant (k) used for restitution force when a limited

stiffness joint reaches one of its stops. This limit property must be zero or
positive: the default value is MEI NFI NI TY. If the stiffness and
damping of an individual limit are both zero, it is effectively
deactivated.

MeReal stop Minimum (for lower limit) or maximum (for upper limit) linear or
angular separation of the attached bodies, projected onto the
relevant axis. For a soft limit, the stop is a boundary rather than an
absolute limit.

Accessors
MeReal MEAPI Mt Singl eLi mit Get Danping ( const MitSingleLimtID sl )

Return the damping term (kq) for this limit.

MeReal MEAPI Mt SingleLinmtGetRestitution ( const MitSingleLimtlID sl )

Return the restitution of this limit.

MeReal MEAPI MItSingleLimtGetStiffness ( const MitSingleLinmtID sl )

Returns the spring constant (k) used for restitution force when a limited joint reaches one of its
stops.
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Mutators
voi d MEAPI Mt Si ngl eLi nitReset ( const MitSingleLimtIDIlimt )

Initialize the individual limit data and set default values (position = 0, restitution = 1,
stiffness = MEINFINITY, danping = 0).

voi d MEAPI Mt Si ngl eLi i t Set Danping ( const MitSingleLimtlD sl,
const MeReal NewDanpi ng)

Set the damping property of the limit. Damping is enforced to be non-negative. The initial value is
ZEero.

void MEAPI Mt Singl eLinitSetRestitution ( const MitSingleLimtlD sl,
const MeReal NewRestitution )

Set the restitution property of the limit. Restitution is enforced to be in the range zero to one
inclusive. The initial value is one.

void MEAPI Mt SingleLimtSetStiffness ( const MitSingleLimtlD sl,
const MeReal NewsStiffness )

Set the stiffness property of the limit. Stiffness is enforced to be non-negative. The initial value is
MEI NFI NI TY.

void MEAPI Mt SingleLinitSetStop ( const MitSingleLimtID sl,
const MeReal NewStop )

Set a limit on the linear or angular separation of the attached bodies.

Functions that are specific to Contacts

A handful of function are specific to contact constraints. This section lists all those functions and comments
on them:
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Accessors

voi d MEAPI Mit Cont act Get Normal (const Mt Contact!| D cont act,
MeVect or 3
nor mal Vec) ;

Return the contact normal of cont act in nor mal Vec, in the world reference frame.

MeReal MEAPI Mt Cont act Get Penetration (const Mt Contactl D contact)

Return the current penetration depth at this contact.

voi d MEAPI Mit Cont act Get Di rection (const Mt Contactl D contact,
MeVect or 3
di r ect Vec)

The contact primary direction is returned in di r ect Vec, in the world reference frame.

Mt Cont act Par ansl D MEAPI Mt Cont act Get Par ans (const Mt Contact| D
cont act)

Return a Mit Cont act Par ans| D pointer to the contact parameters of this contact.
The following function is only used in conjunction with Karma Collision.
Mit Cont act | D MEAPI Mt Cont act Get Next (const Mt Contact| D contact);

Return the pointer to the next contact associated with this body pair if it was set in collision. If the
return value is equal to Mit Cont act | nval i dl Dthen no next contact exists.

Mutators

The following functions are mutators specific to contacts:

voi d MEAPI Mt Cont act Set Bodi es (const Mt Contact| D contact, const
Mit Bodyl D bodyl, const Mt Bodyl D body?2);

Set the contact bodies body1 and body2 to be attached to cont act .

voi d MEAPI Mit Cont act Set Normal (const Mit Contact!l D contact, const
MeReal xNorm const MeReal yNorm const MeReal zNorm

Set the contact normal of cont act to (xNorm yNorm zNornj;

voi d MEAPI Mit Cont act Set Penetration ( const Mt Contactl D contact,
const MeReal penetration );

Set the value penet r at i on of the penetration depth at the contact cont act .

voi d MEAPI Mt Cont act Set Parans ( const Mt Contact!| D contact,
const Mt Cont act Par ansl D paraneters );

Utility for setting all contact parameters. This allows the user to set all values in the
Mdt Cont act Par ans structure at once.

voi d MEAPI Mt Cont act Set Next ( const Mt Contactl D contact,
const Mt Contact| D next Contact );

Set the pointer of cont act to the next contact next Cont act . Used by Mcd collision.
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voi d MEAPI Mit Contact SetDirection ( const MtContactlD contact,
const MeReal xDir, const MeReal yDir, const MeReal
zDir );

Set the primary direction for this contactat (xDir, yDir, zDir).

This is only necessary if surface properties are to vary depending on the direction. For isotropic
contacts, this function should not be called, and the primary and secondary parameters should be
set to the same value. The direction should always be perpendicular to the given normal, and the
secondary direction is perpendicular to the primary direction.
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MdtContactGroups

To simplify management of contacts, Karma organises contacts into ContactGroups. A contact group is a
constraint between two bodies, or a body and the world, that holds all the contacts between those bodies.
This makes it easy to deal with the contacts as a group.

Functions that are specific to MdtContactGroups

Accessors.

Mit Cont act | D MEAPI Mt Cont act Gr oupGet Fi r st Cont act
Mdt Cont act Groupl D group );

Return the first contact in a contact group, or NULL if the contact group is empty.

Mit Cont act | D MEAPI Mt Cont act G- oupGet Next Cont act
Mdt Cont act Groupl D group, Mt Contact| D cont act
)

Return the contact following contact in the contact group, or NULL if contact is the last contact.

i nt MEAPI Mt Cont act G oupt Get Count ( Mt Cont act G oupl D group )

Return the number of contacts in the group.

MeReal MEAPI Mt Cont act G oupGet Nor nal Force ( Mt Cont act Groupl D
group )

Return the magnitude of the last timestep’s normal force between the two bodies connected by the
group.

Mel32 MEAPI MdtContactGroupGetSortKey( const MdtContactGroupID gr oup );

Return the sort key of contactgroup.

Mutators

The following functions are mutators specific to contacts:

Mit Cont act | D MEAPI Mt )Cont act & oupCr eat eCont act (Mt Cont act Groupl D
group);

Create a new contact and add it to the contact group. Returns the new contact.

voi d MEAPI Mit Cont act Gr oupDest r oyCont act ( Mlt Cont act G- oupl D gr oup,
Mit Cont act | D contact);

Remove contact from the contact group.

voi d MEAPI Mit Cont act G- oupAppendCont act ( Mt Cont act Groupl D group,
Mit Cont act | D contact);

Append contact to the contact group.
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voi d MEAPI Mt Cont act G- oupRenmoveCont act ( Mt Cont act G- oupl D gr oup,
Mdt Cont act D contact );

Remove contact from the contact group, but don't delete it.

void MEAPI MdtContactGroupSetSortKey( const MdtContactGroupID gr oup,
Mel32 key );

Assign a sort key to contactgroup.
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The MdtBclContactParams Structure

All the properties of a given contact between two objects are stored in a Mit Bcl Cont act Par ans structure,
such as the contact type, the friction model or the coefficient of restitution.

The list of members of the Mit Bcl Cont act Par ans structure follow.

Member Description
Mdt Cont act Type Contact type (zero, 1D or 2D friction)
type
Mdt Fri cti onModel Friction model to use along primary direction.
nodel 1
Mdt Fri cti onModel Friction model to use along secondary direction.
nodel 2
int options Bitwise combination of MdtBclContactOption's.
MeReal The friction coefficient for use in the normal force friction
Fricti onCoefficient
model.
MeReal restitution Restitution parameter.

MeReal vel Threshold  Minimum velocity for restitution.

MeReal softness Contact softness parameter (soft mode). Violates ideal
constraint, allows penetration and gives a ‘springy’ effect as
well. It can cause objects to take longer to come to rest.
Values range from 0 to 1, with 1 being very soft and .1 or
.001 being typical.

MeReal Contact maximum adhesive force parameter (adhesive

max_adhesi ve_force mode). Sticky contacts may not work very well because
when the penetration of a contact goes negative (the
contact has separated) the contact is destroyed, and the
'sticky' force can't pull the objects back together again.

MeReal frictionl Maximum friction force in primary direction.
MeReal friction2 Maximum friction force in secondary direction.
MeReal slipl First order slip in primary direction.

MeReal slip2 First order slip in secondary direction.

MeReal slidel Surface velocity in primary direction.

MeReal slide2 Surface velocity in secondary direction.

There exist a large number of functions, mutators and accessors, to interact with this structure. These are
listed in the Mdt Cont act Par ans. h header file, in the reference manual. The more popular ones follow:

To apply the friction at a contact point:

voi d MEAPI Mt Cont act Par ansSet Type ( const Mt Cont act Par ansl D par am
const Mt Cont act Type conType );

Set the type conType of the contact parameters structure par am
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Karma Dynamics supports three main friction modes:

Friction Type Description

Mt Cont act TypeFri cti onZer Frictionless contact
[0}

Mt Cont act TypeFri ctionlD Friction only along primary direction

Mit Cont act TypeFricti on2D Friction in both directions

When using Mit Cont act TypeFri cti onZer o, the direction or the coefficient of friction does not need
setting.

When using Mit Cont act TypeFri cti on2D, friction acts in orthogonal directions on the plane of contact,
and the properties for each direction can be set. The direction of a 2D contact will be set automatically.

The coefficients of friction can be specified separately in the primary and secondary directions. The primary
and secondary directions are perpendicular to each other. To specify the primary direction, use:

voi d MEAPI Mt Cont act Set Position ( const Mt ContactlD contact,
const MeReal x, const MeReal y, const MeReal z );

Set the primary direction for this contact. This is only necessary to define surface properties to
vary depending on the direction. For isotropic contact, this function should not be called, and the
primary and secondary parameters should be set to the same value. The direction should always
be perpendicular to the given normal, and the secondary direction is perpendicular to the primary
direction. The secondary direction is automatically set according to the right-hand rule.

To specify the friction model that a contact will use, use the function

voi d MEAPI Mt Cont act Par ansSet Pri maryFri cti onModel (
const Mt Cont act Par ansl D param
const MtFricti onvbdel fMdel );

Set the friction model f Model to use along the primary direction.

Friction Model Description

Mt Fri cti onMbdel Box Box Model of friction (simplified Coulomb)

Mt Fri cti onMbdel Nor nmal For Friction based on the normal force. Coulomb like.
ce

To reset the contact structure to its default values, use:
voi d MEAPI Mt Cont act Par ansReset ( const Mt Contact Paransl D param)

Initializes the contact parameters structure to the default values.

The following values are reset to their default values.

Member Default Value

MdtContactType type MdtContactTypeFrictionZero

MdtFrictionModel modell/model2 MdtFrictionModelBox

MeReal restitution 0.0
MeReal velThreshold 0.001
MeReal softness 0.0
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Member Default Value
MeReal max_adhesive_force 0.0
MeReal slipl/slip2 0.0
MeReal slide2/slide2 0.0

When a joint or a contact is no longer needed, it can be removed with the following function:
voi d MEAPI Mt Cont act Destroy( const Mit*ID joint_or_contact);

This function destroys the joint or contact named cont act, where * represents the
joint or contact type.

TThe function that creates a contact and returns a Mit Cont act | D variable is:
Mit Cont act | D MEAPI Mt Cont actCreate ( const MitWorldID world );

This function creates a new joint or contact in the world.

The formal description of these contact mutators are

voi d MEAPI Mit Contact Set Normal ( const Mt Contactl| D cont act,
const MeReal xNorm const MeReal yNorm const MeReal
zNorm);

Set the contact normal of cont act to (xNorm yNorm zNornj.

and

voi d MEAPI MitCont act Set Penetration ( const MtContactlD contact,
const MeReal penetration );

Set the value penet r at i on of the penetration depth at the contact cont act .

Formal description:

Mt Cont act Par ansl D MEAPI Mt Cont act Get Par ans ( const Mt Contactl| D
contact );

Return a Mit Cont act Par ans| D pointer to the contact parameters of this contact.

The Mit Cont act Enabl e() and Mit Cont act Di sabl e() are not functions, but macros that were
implemented to save writing two lines instead of one.
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Acceleration

Actuator

Angular Velocity

Ballistics

Ballistic Objects

BSP Tree

Cartesian Coordinates

Center of Mass

Collision Detection

Collision Model

Collision Response

Constraint

Rate of change of velocity with respect to time, or how fast velocity is
increasing.

A mechanical device for moving or controlling something, such as a motor, a
lever, a piston, and so on. Actuators can be implemented with forces and
torques or with velocity constraints.

The rate of rotation about an axis. This is a vector quantity whose direction
points along the instantaneous axis preserved by the rotation and whose
magnitude is the rate of rotation about this axis.It is usually expressed in
radians per second or revolutions per second.

Ballistics is the science of the motion and behavior of projectiles, missiles,
bullets and other similar objects in flight submitted to a gravitational field and
air resistance.

In a games development environment, ballistic objects are usually single rigid
body projectiles that are subject to ballistic calculations without contacts or
impulses.

Binary Space Partitioning (BSP) tree. BSP trees are tools used in 3D graphics
for organizing the geometry of objects and extracting information about
geometrical relationships. In 3D worlds they are often used for visibility
determination and hidden surface removal.

A coordinate system which is based on orthogonal axes. This is the standard
X, Y and z coordinate system, in contrast to polar coordinates on a sphere. In
3D graphics applications, x usually stands for left-right position, y describes
vertical position and z gives the position along the line of sight, (i.e., depth).
Traditionally, graphics viewers use a Left Handed system where x increases to
the right, y increases towards the top, and z increases further along the line of
sight i.e., into the screen.

The point in a body or system of bodies at which the whole mass may be
considered as concentrated. For the purpose of dynamics calculations, a body
or system of bodies can be abstracted to a point mass located at its center of
mass coordinates.

A calculation which determines if two objects are intersecting, and if so, also
computes the location and the local geometry of the object near the
intersection. Collision detection may determine the spatial relationships
between objects, such as the approximate separation distance between them.

A geometrical representation of an object used for collision detection. Vortex
supports a variety of primitives such as sphere, box, plane, cylinder and cone
as well as more complicated objects such as convex primitives and
unstructured lists of triangles. The collision model may be identical to the
model used for rendering or maybe an approximation that allows for faster
collision detection. Collision models can also be made up of a combination of
collision primitives.

The change of motion of an object which occurs when it collides with another
object, or when a joint limit is reached. Note that collision response is related
to the dynamics properties of the objects in contact. Collision response is
determined by the degree of restitution and the friction properties at the point
of impact.

An external restriction on the motion of an object or body. There are equality
and inequality constraints, constraints on positions and velocities, ideal
constraints and non-ideal ones, and further constraints on forces resulting
from constraints. There are constraints involving a single rigid body and others
involving more. Constraints are maintained by computing a force that must be
applied to all involved bodies so that the constraint remains satisfied. An
example of an equality constraint could be that a joint attached to a specific
location of a body should not be allowed to wander off a preset location, that
is, the body may move as long as that point remains where it was initially (this
still allows object rotation about that point). An inequality restriction could be
a ball placed in a room: allowed to move freely on the floor as long as it stays
inside the area bordered by the walls.
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These restrictions are used to connect objects together, such as connecting
two rigid bodies with a hinge, or to impose motion in a joint by applying a
force limited velocity constraint which is used to model a motor. Constraints
are called ideal or non-ideal according to whether or not they dissipate energy,
i.e.: whether or not the constraint force does work on the system. A ball and
socket joint is an ideal constraint but a box friction contact constraint is non-
ideal.

A mathematical relation between the coordinates of several bodies.

Culling is the process of selectively removing items from a collection. For
example, the process of eliminating certain polygons that shouldn’t be seen
before drawing a scene.

A geometrical object with no holes in it, such as a sphere or a cube. More
precisely, an object is convex if given any two points of the interior or the
surface of the object, all the points that lie on the line segment between those
two points are also inside or on the surface of the object. A doughnut is not
convex for instance.

This is a rate of energy loss of a body. It results in the body slowing down and
being gradually brought to rest. Rate of energy loss is proportional to velocity.

Dynamics is the part of mechanics (which, of course is a branch of physics)
that is concerned with the causes of accelerating motion. It describes the
change in motion of objects or particles using the concepts of force,
momentum, energy, and mass. It is governed by the three basic laws of
motion, called Newton's laws. See Newton’s Laws.

The Euler angles are the three angles W, ® and ¢ (for yaw, pitch and roll)
used to describe the orientation of a body’s reference frame relative to the
world reference frame.

X

The resulting rotation matrix R;; would be written as:

cosWcosd — cos@Osinpsin®  cosWsind + cos@cosPpsinW  sinWsin®
—sinWcos ¢ — cos@OsindpcosW — sinWsind + cosO@cospcosW cosWsin©®
sin@sin ¢ —sin®@cos ¢ cos@

Another way of representing a body‘s rotation is with a quaternion.

A force is what causes the state of motion (momentum) of an object to
change. If you to change the way something is moving (change its direction or
make it go faster, for example) you must apply a force to it. Forces are vector
quantities with orientation and magnitude. The bigger the force, the faster the
motion will change. In 3D games’ worlds, forces typically include gravity and
wind.

This is a special model for controlling the remaining degree of freedom in
either a hinge or a prismatic joint in the Vortex Dynamics Library. It allows you
to control the relative linear velocity of two bodies connected by a prismatic
joint or the relative angular velocity of two bodies connected with a hinge
joint. You set the desired target velocity, which will be achieved provided that
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Frame

Frame Rate

Friction Force

GJK Algorithm

GJK Engine

Gravity

Hooke’s Law

Impulse

Inertia

Inertia Tensor

the force required to do so is less than the limit specified, otherwise, the
maximum force is applied. You

may control the desired velocity using a mouse or a joystick input signal.
Force limited actuators respond very quickly and are inherently stable; they
are the best way to introduce user controlled motion in a joint in the Vortex
Dynamics Library.

A single rendered screen of graphics,

The number of screen images displayed per second, usually abbreviated by
fps (frame per second). Common frame rates are 60fps for games consoles,
25fps for PAL video, and 30fps for NTSC video, although other speeds may be
used

The force that resists relative motion between two bodies in contact. Viscous
friction imposes a force which is proportional to the relative velocity and
opposed to it. Dry friction has two modes: sliding mode and stick mode. When
bodies are sliding, this force directly opposes the relative motion and has a
magnitude proportional to the normal force which keeps the two bodies from
interpenetrating. Otherwise, this force prevents the bodies from sliding, in
which case it does not dissipate energy.

A fast method of doing collisions between a set of convex objects invented by
Gilbert, Johnson and Keerthi and described in: "A Fast Procedure for
Computing the Distance between Complex Objects in Three-Dimensional
Space" by E. G. Gilbert, D. W. Johnson and S. S. Keerthi, IEEE Trans. Robotics
and Automation 4(2):193-203, April 1988.

The part of the collision detection software that implements the GJK
algorithm.

In a Newtonian world, gravity is a force that attracts all objects to each other.
Gravitational force between any two given objects is proportional to the
products of their masses and inversely proportional to the square of the
distance that separates them.

However, we are mostly interested in constant and uniform gravity which is
the force that keeps your chair on the floor. For objects near the surface of the
earth, gravity causes objects to accelerate downward at a constant rate of
9.81 m/sec?2, independent of their mass. This means that gravity causes an
object's velocity to change by 9.81 m/sec2 downward for every second the
object is under the influence of gravity.

This law states that the force on a object displaced from a point of equilibrium
is proportional to the displacement and in the direction opposite to the
displacement.

The change in momentum of an object. This can happen over either a finite
time interval or over a vanishingly small time interval as in the case of
collisions. Most of the time, people mean the latter when referring to impulses
i.e., forces which act over a very small amount of time and which cause
sudden changes in the velocity of an object.

The tendency of an object to maintain its state of rest or of uniform motion.
The resistance to change in the quantity of linear motion (linear momentum)
is given by the mass of the object. Resistance to change in the quantity of
angular motion (angular momentum) about an axis is the moment of inertia
about that axis.

The set of numbers that describe the resistance to change in angular motion.
This consists of several numbers because, in any given orientation, a body
may have different inertia to rotation about all three axes, x, y and z. This
quantity also changes with the orientation of the body, which is why it is a
tensor.

The inertia tensor can be represented as a 3x3 matrix which is symmetric and
positive definite.

Inertial Reference Frame

Joint

A reference system in which Newton’s laws of motion hold. See Newton’s
Laws.

An equality constraint or connection between objects or bodies. When two or
more bodies or objects are connected by joints, they form a multi-body
system which is also called a jointed body or an articulated body.
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Kinematics is the study of how things move in relation with time. It describes
the different types of motion a body can undergo: translational (change of
position), rotational (change of orientation), vibrational (change of shape and
size).

The origin of the local coordinate system of a body is usually located at its
center of mass.

Given any vector function of several variables with components

Fl(xl' X2, auey Xn),
Fo(X1, X2, «-es Xp),
Fa(X1, X2, --vy Xp),

the Jacobian matrix is defined as:

Jij = a_Fl
an

In the case where the functions F; represent a coordinate transformation
between x; and g; = Fj, the Jacobian matrix is the linear approximation of the
coordinate transformation in the neighborhood of the point where the
derivatives of Fj are evaluated.

In a more general way, the Jacobian matrix is the local linear approximation of
a non-linear function in the neighborhood of a point xg:

F(X) = F(Xg) + J(X-Xg)

In Kea, we use the Jacobians of the constraint functions in the computation of
the constraint forces, i.e. the forces required to maintain the constraint.

Mass is the measure of the amount of material contained within a body. It is
independent of the location of the body.

A branch of physics that deals with the analysis of motion of physical objects.
This includes the study of the equations of motion derived in dynamics.

This is a quantitative measure of the state of motion of an object. Linear
momentum is the product of mass and velocity: p = mv and is a vector
quantity. Angular momentum is a measure of the rotational motion of an
object around some point.

The Sl unit of force, derived from 3 basic units: mass, length and time.

Newton's first law of motion: In an inertial frame, an object that is free of
interaction has constant momentum. An object at rest remains at rest, and if
it is in motion, that motion will be uniform and constant, that is, the center of
mass will move on a straight line and the motion about the center of mass will
be uniform. The tendency of an object to resist any change in motion is called
the inertia of the object. Mass is a measure of inertia.

Newton's second law states the relationship between an acting force, the
momentum of a body, and its acceleration, as follows:

where p is the momentum of the object and F is the applied force. In words,

this means that the force exerted on a body is equal to the rate of change of
momentum of that body. For point masses with constant mass, this simplifies
to:

av _
my = F
the familiar F = ma. As such, Newton's second law only applies to point
masses and further analysis is required to derive the equations of motion for
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Normals

Object

rigid bodies and composite objects.

Newton's third law states that for every action there is an equal and
opposite reaction. If two bodies interact, the magnitude of the force exerted
by body 1 on body 2 is equal to the magnitude of the force exerted on body1l
by body 2. These two forces are also opposite in direction.

Normals are unit vectors. The normal to a plane is a unit vector perpendicular
to the plane. In 3D graphics, they indicate the visible side of an object.

We use this term to describe virtually any entity that can move—a point mass,
rigid body, articulated body, multi-body system, and so on. We use it as a
general term when what is being discussed is not restricted to rigid bodies.
Object does not refer to object-oriented programming constructs.

Ordinary Differential Equation

Orientation
Power

Quaternion

A differential equation is a relationship between the rate of change for the
variables of a system and the state of that system. The term ordinary means
that the derivatives are taken with respect to an independent variable which is
often labelled as time. When there is more than one independent variable,
such as space for instance, the equations are called partial differential
equations.

Describes a body’s direction relative to the world or reference frame
coordinates.

The time rate at which work is performed (energy is transformed) by a
system.

Quaternions form a four-dimensional algebra which is an extension of normal
complex numbers. They can be used to represent rotations of coordinate axes
in 3D worlds in a way that is free of singularity, in contrast to Euler angles, for
example. With Euler angles there are difficulties when the pitch angle reaches
90 degrees - a problem that never occurs when quaternions are used.

The four components of a unit quaternion which represents a 3D rotation can
be thought of as a set of parameters for 3D rotations, as an alternative to
Euler angles.

Because they lack the singularities that Euler systems have, quaternions allow
for smooth interpolations between rotations. It is possible to convert Euler
Angles to a quaternion Q using the following equation:

Q = do+dxi+qyj +dzk

where:
Go = COS%COS%COS%&+ sin%gin%gn%
Ox = cos%cos%sin%&+ sin %sin %cos%
dy = Cos%sin%coswm+ sin %cos%sin%
qz = sin%ﬂacos%cos%&+ COS%Sin%sin%%

Restitution (coefficient of)

Right—Hand Rule

When designing your game, think of restitution as bounciness. In physics
terms it is the ratio of the relative speeds of two bodies just after and just
before a collision between them along their direction of impact; it ranges from
0, for perfectly inelastic collisions (no bounce), to 1 (maximum bounce), for
completely elastic ones. If you increase the value to a number greater than
one, you’ll get an effect like a pinball machine. It is a constant at moderate
speeds.

A useful visual aid to represent a right-handed coordinate system. Here’s how
it works: orient your right hand so that your thumb is perpendicular to the
plane defined by the x and y axes, and so that you can curl your fingers in the
direction from the x axis towards the y axis. Your thumb will be pointing in the
direction of the z axis.
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A solid object that doesn’t change its shape or size, despite any forces being
applied to it.

In a 3D world, rotation of an object is its motion about an internal axis of
symmetry relative to an internal coordinate system.

S| stands for Systeme International. It is a standardized set of units for
scientific measurement. Examples of Sl units include: the Newton, metre,
Hertz, second and Watt. Examples of Sl prefixes include: mega, milli, tera and

giga.

Stiffness is a measure of how a spring resists stretching. A very stiff spring will
hardly move at all—even if you pull very hard, whereas a spring with very little
stiffness will stretch easily even if you pull it gently.

The stiffness is related to the 'spring constant' usually represented by the
letter K. Writing this down as a formula called Hooke's law for the extension of
springs we get;

Force = - (spring constant) X (length increase)

Stiff springs create very large forces for short times and this can be a problem
in a simulation. The reason is that the force is never very large for very long.
For a small mass attached on a stiff spring, the resulting motion for the mass
is to stay very near the point of equilibrium. The force from the spring will
change very rapidly from large to small to keep the mass in place. An
integrator that is using a time step larger than half the period of the spring
might overestimate the magnitude of the force and this can lead to an
"explosion" i.e., a situation where the mass moves further and further away
from the equilibrium point.

Note also that the frequency of a spring is dependent on the mass attached on
it and if you drop a small mass on a stiff spring, that will produce a very high
frequency which might be difficult for the integrator.

The constraint solver uses a first order integrator for user forces which doesn't
check if forces are getting very large. This means that you should avoid stiff
springs altogether. If you want to simulate a stiff spring, you should use a
"relaxed" constraint instead i.e., a constraint that is allowed to be violated.

Time, like mass, is another of those rather undefined measures in physics.
Everybody knows what it is, and agrees to measure it in seconds.

A time step is an interval of time, typically of the order of the frame rate. If
you run a simulation at 60 fps, your time step should be 1/60 s or shorter; if it
is shorter, you will need to perform several steps between frames if you want
to create a real-time simulation in which everything seems to move at the
same rate as in the real world.

The simulation computes what the state of the system will be after an interval
of time equal to the time step has elapsed, using current state and derivative
information. Essentially, the simulator uses current velocities and forces and
extrapolates them to compute an approximation of the state into the future.
The correctness of the approximation is related to the time step: the bigger
the time step the worse the approximation.

The problem of keeping track of the distance between objects as simulated
time is stepped forward. This is useful to estimate when objects will collide.

A torque can be described as a turning or twisting force. It’s the measure of a
force's tendency to produce a rotation about an axis, which also produces a
change in the angular momentum of a body. For an extended body—one that
is not just a single point mass - a torque is generated by applying a force at a
point other than at the center of mass. The distance between the point where
the force is applied and the center of mass acts like a lever: the greater the
distance, the bigger the resulting change in angular momentum.

The rate of change of position along a straight line with respect to time. A
velocity has speed and direction; it is a vector quantity whose magnitude is
expressed in units of distance over time, such as kilometers per hour.

Work is the product of force, and the distance moved by the point of
application of the force in the direction that the force was applied. Work is
directly related to the change in the energy of the system.
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World Reference Frame A coordinate system that is used to locate an object in relation to a world
origin. This is sometimes referred to as a Global Coordinate system.

XYZ axes In a Cartesian coordinate system, these are the three orthogonal axes which
represent three-dimensional space.
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